Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
JMIR Form Res ; 5(12): e32165, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1566605

ABSTRACT

BACKGROUND: Several app-based studies share similar characteristics of a light touch approach that recruit, enroll, and onboard via a smartphone app and attempt to minimize burden through low-friction active study tasks while emphasizing the collection of passive data with minimal human contact. However, engagement is a common challenge across these studies, reporting low retention and adherence. OBJECTIVE: This study aims to describe an alternative to a light touch digital health study that involved a participant-centric design including high friction app-based assessments, semicontinuous passive data from wearable sensors, and a digital engagement strategy centered on providing knowledge and support to participants. METHODS: The Stress and Recovery in Frontline COVID-19 Health Care Workers Study included US frontline health care workers followed between May and November 2020. The study comprised 3 main components: (1) active and passive assessments of stress and symptoms from a smartphone app, (2) objective measured assessments of acute stress from wearable sensors, and (3) a participant codriven engagement strategy that centered on providing knowledge and support to participants. The daily participant time commitment was an average of 10 to 15 minutes. Retention and adherence are described both quantitatively and qualitatively. RESULTS: A total of 365 participants enrolled and started the study, and 81.0% (n=297) of them completed the study for a total study duration of 4 months. Average wearable sensor use was 90.6% days of total study duration. App-based daily, weekly, and every other week surveys were completed on average 69.18%, 68.37%, and 72.86% of the time, respectively. CONCLUSIONS: This study found evidence for the feasibility and acceptability of a participant-centric digital health study approach that involved building trust with participants and providing support through regular phone check-ins. In addition to high retention and adherence, the collection of large volumes of objective measured data alongside contextual self-reported subjective data was able to be collected, which is often missing from light touch digital health studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT04713111; https://clinicaltrials.gov/ct2/show/NCT04713111.

2.
JMIR Form Res ; 5(12): e32165, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1496853

ABSTRACT

BACKGROUND: Several app-based studies share similar characteristics of a light touch approach that recruit, enroll, and onboard via a smartphone app and attempt to minimize burden through low-friction active study tasks while emphasizing the collection of passive data with minimal human contact. However, engagement is a common challenge across these studies, reporting low retention and adherence. OBJECTIVE: This study aims to describe an alternative to a light touch digital health study that involved a participant-centric design including high friction app-based assessments, semicontinuous passive data from wearable sensors, and a digital engagement strategy centered on providing knowledge and support to participants. METHODS: The Stress and Recovery in Frontline COVID-19 Health Care Workers Study included US frontline health care workers followed between May and November 2020. The study comprised 3 main components: (1) active and passive assessments of stress and symptoms from a smartphone app, (2) objective measured assessments of acute stress from wearable sensors, and (3) a participant codriven engagement strategy that centered on providing knowledge and support to participants. The daily participant time commitment was an average of 10 to 15 minutes. Retention and adherence are described both quantitatively and qualitatively. RESULTS: A total of 365 participants enrolled and started the study, and 81.0% (n=297) of them completed the study for a total study duration of 4 months. Average wearable sensor use was 90.6% days of total study duration. App-based daily, weekly, and every other week surveys were completed on average 69.18%, 68.37%, and 72.86% of the time, respectively. CONCLUSIONS: This study found evidence for the feasibility and acceptability of a participant-centric digital health study approach that involved building trust with participants and providing support through regular phone check-ins. In addition to high retention and adherence, the collection of large volumes of objective measured data alongside contextual self-reported subjective data was able to be collected, which is often missing from light touch digital health studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT04713111; https://clinicaltrials.gov/ct2/show/NCT04713111.

5.
CMAJ ; 193(12): E410-E418, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1160947

ABSTRACT

BACKGROUND: Patient characteristics, clinical care, resource use and outcomes associated with admission to hospital for coronavirus disease 2019 (COVID-19) in Canada are not well described. METHODS: We described all adults with COVID-19 or influenza discharged from inpatient medical services and medical-surgical intensive care units (ICUs) between Nov. 1, 2019, and June 30, 2020, at 7 hospitals in Toronto and Mississauga, Ontario. We compared patient outcomes using multivariable regression models, controlling for patient sociodemographic factors and comorbidity level. We validated the accuracy of 7 externally developed risk scores to predict mortality among patients with COVID-19. RESULTS: There were 1027 hospital admissions with COVID-19 (median age 65 yr, 59.1% male) and 783 with influenza (median age 68 yr, 50.8% male). Patients younger than 50 years accounted for 21.2% of all admissions for COVID-19 and 24.0% of ICU admissions. Compared with influenza, patients with COVID-19 had significantly greater in-hospital mortality (unadjusted 19.9% v. 6.1%, adjusted relative risk [RR] 3.46, 95% confidence interval [CI] 2.56-4.68), ICU use (unadjusted 26.4% v. 18.0%, adjusted RR 1.50, 95% CI 1.25-1.80) and hospital length of stay (unadjusted median 8.7 d v. 4.8 d, adjusted rate ratio 1.45, 95% CI 1.25-1.69). Thirty-day readmission was not significantly different (unadjusted 9.3% v. 9.6%, adjusted RR 0.98, 95% CI 0.70-1.39). Three points-based risk scores for predicting in-hospital mortality showed good discrimination (area under the receiver operating characteristic curve [AUC] ranging from 0.72 to 0.81) and calibration. INTERPRETATION: During the first wave of the pandemic, admission to hospital for COVID-19 was associated with significantly greater mortality, ICU use and hospital length of stay than influenza. Simple risk scores can predict in-hospital mortality in patients with COVID-19 with good accuracy.


Subject(s)
COVID-19/epidemiology , Critical Care/statistics & numerical data , Hospitalization/statistics & numerical data , Influenza, Human/epidemiology , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/therapy , Female , Humans , Influenza, Human/diagnosis , Influenza, Human/therapy , Male , Middle Aged , Ontario , Outcome Assessment, Health Care , Retrospective Studies , Risk Factors , Socioeconomic Factors , Survival Rate
6.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1088863

ABSTRACT

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Subject(s)
COVID-19/epidemiology , Data Collection/methods , Electronic Health Records , Data Collection/standards , Humans , Peer Review, Research/standards , Publishing/standards , Reproducibility of Results , SARS-CoV-2/isolation & purification
7.
Cureus ; 12(7): e9448, 2020 Jul 28.
Article in English | MEDLINE | ID: covidwho-736865

ABSTRACT

Introduction The need to streamline patient management for coronavirus disease-19 (COVID-19) has become more pressing than ever. Chest X-rays (CXRs) provide a non-invasive (potentially bedside) tool to monitor the progression of the disease. In this study, we present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images. Such a tool can gauge the severity of COVID-19 lung infections (and pneumonia in general) that can be used for escalation or de-escalation of care as well as monitoring treatment efficacy, especially in the ICU. Methods Images from a public COVID-19 database were scored retrospectively by three blinded experts in terms of the extent of lung involvement as well as the degree of opacity. A neural network model that was pre-trained on large (non-COVID-19) chest X-ray datasets is used to construct features for COVID-19 images which are predictive for our task. Results This study finds that training a regression model on a subset of the outputs from this pre-trained chest X-ray model predicts our geographic extent score (range 0-8) with 1.14 mean absolute error (MAE) and our lung opacity score (range 0-6) with 0.78 MAE. Conclusions These results indicate that our model's ability to gauge the severity of COVID-19 lung infections could be used for escalation or de-escalation of care as well as monitoring treatment efficacy, especially in the ICU. To enable follow up work, we make our code, labels, and data available online.

SELECTION OF CITATIONS
SEARCH DETAIL
...