Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Aging Dis ; 12(8): 2173-2195, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1667753

ABSTRACT

Newly emerging significant SARS-CoV-2 variants such as B.1.1.7, B.1.351, and B.1.1.28 are the variant of concern (VOC) for the human race. These variants are getting challenging to contain from spreading worldwide. Because of these variants, the second wave has started in various countries and is threatening human civilization. Thus, we require efficient vaccines that can combat all emerging variants of SARS-CoV-2. Therefore, we took the initiative to develop a peptide-based next-generation vaccine using four variants (Wuhan variant, B.1.1.7, B.1.351, and B.1.1.28) that could potentially combat SARS-CoV-2 variants. We applied a series of computational tools, servers, and software to identify the most significant epitopes present on the mutagenic regions of SARS-CoV-2 variants. The immunoinformatics approaches were used to identify common B cell derived T cell epitopes, influencing the host immune system. Consequently, to develop a novel vaccine candidate, the antigenic epitopes were linked with a flexible and stable peptide linker, and the adjuvant was added at the N-terminal end. 3D vaccine candidate structure was refined, and quality was assessed using web servers. The physicochemical properties and safety parameters of the vaccine construct were assessed through bioinformatics and immunoinformatics tools. The molecular docking analysis between TLR4/MD2 and the proposed vaccine candidate demonstrated a satisfactory interaction. The molecular dynamics studies confirmed the stability of the vaccine candidate. Finally, we optimized the proposed vaccine through codon optimization and in silico cloning to study the expression. Our multi-epitopic next-generation peptide vaccine construct can boost immunity against the Wuhan variant and all significant mutant variants of SARS-CoV-2.

2.
Mol Biotechnol ; 64(5): 510-525, 2022 May.
Article in English | MEDLINE | ID: covidwho-1603883

ABSTRACT

Presently, the world needs safe and effective vaccines to overcome the COVID-19 pandemic. Our work has focused on formulating two types of mRNA vaccines that differ in capacity to copy themselves inside the cell. These are non-amplifying mRNA (NRM) and self-amplifying mRNA (SAM) vaccines. Both the vaccine candidates encode an engineered viral replicon which can provoke an immune response. Hence we predicted and screened twelve epitopes from the spike glycoprotein of SARS-CoV-2. We used five CTL, four HTL, and three B-cell-activating epitopes to formulate each mRNA vaccine. Molecular docking revealed that these epitopes could combine with HLA molecules that are important for boosting immunogenicity. The B-cell epitopes were adjoined with GPGPG linkers, while CTL and HTL epitopes were linked with KK linkers. The entire protein chain was reverse translated to develop a specific NRM-based vaccine. We incorporate gene encoding replicase in the upstream region of CDS encoding antigen to design the SAM vaccine. Subsequently, signal sequences were added to human mRNA to formulate vaccines. Both vaccine formulations translated to produce the epitopes in host cells, initiate a protective immune cascade, and generate immunogenic memory, which can counter future SARS-CoV-2 viral exposures before the onset of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Bioengineering , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Pandemics/prevention & control , RNA, Messenger/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , mRNA Vaccines
3.
Future Virology ; : fvl-2020-0342, 2021.
Article in English | PMC | ID: covidwho-1158321

ABSTRACT

Aim: COVID-19 is currently the biggest threat to mankind. Recently, ivermectin (a US FDA-approved antiparasitic drug) has been explored as an anti-SARS-CoV-2 agent. Herein, we have studied the possible mechanism of action of ivermectin using in silico approaches. Materials &methods: Interaction of ivermectin against the key proteins involved in SARS-CoV-2 pathogenesis were investigated through molecular docking and molecular dynamic simulation. Results: Ivermectin was found as a blocker of viral replicase, protease and human TMPRSS2, which could be the biophysical basis behind its antiviral efficiency. The antiviral action and ADMET profile of ivermectin was on par with the currently used anticorona drugs such as hydroxychloroquine and remdesivir. Conclusion: Our study enlightens the candidature of ivermectin as an effective drug for treating COVID-19.</p>

4.
3 Biotech ; 11(2): 47, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1023359

ABSTRACT

COVID-19 caused by SARS-CoV-2 was declared a global pandemic by WHO (World Health Organization) in March, 2020. Within 6 months, nearly 750,000 deaths are claimed by COVID-19 across the globe. This called for immediate social, scientific, technological, public and community interventions. Considering the severity of infection and the associated mortalities, global efforts are underway to develop preventive measures against SARS-CoV-2. Among the SARS-CoV-2 target proteins, Spike (S) glycoprotein (a.k.a S Protein) is the most studied target known to trigger strong host immune response. A detailed analysis of S protein-based epitopes enabled us to design a novel B-cell-derived T-cell Multi-epitope-based peptide (MEBP) vaccine candidate. This involved a systematic and comprehensive computational protocol consisting of prediction of dual-purpose epitopes and designing an MEBP vaccine construct. This was followed by 3D structure validation, MEBP complex interaction studies, in silico cloning and vaccine dose-based immune response simulation to evaluate the immunogenic potency of the vaccine construct. The dual-purpose epitope prediction protocol was designed such that the same epitope elicits both humoral and cellular immune response unlike the earlier designs. Further, the epitopes predicted were screened against stringent criteria to ensure selection of a potent candidate with maximum antigen coverage and best immune response. The vaccine dose-based immune response simulation studies revealed a rapid antigen clearance through antibody generation and elevated levels of cell-mediated immunity during repeated exposure of the vaccine. The favourable results of the analysis strongly indicate that the vaccine construct is indeed a potent vaccine candidate and ready to proceed to the next steps of experimental validation and efficacy studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02574-x.

5.
Inform Med Unlocked ; 20: 100394, 2020.
Article in English | MEDLINE | ID: covidwho-645703

ABSTRACT

SARS-CoV-2 is spreading globally at a rapid pace. To contain its spread and prevent further fatalities, the development of a vaccine against SARS-CoV-2 is an urgent prerequisite. Thus, in this article, by utilizing the in-silico approach, a vaccine candidate for SARS-CoV-2 has been proposed. Moreover, the effectiveness and safety measures of our proposed epitopic vaccine candidate have been evaluated by in-silico tools and servers (AllerTOP and AllergenFP servers). We observed that the vaccine candidate has no allergenicity and successfully combined with Toll-like receptor (TLR) protein to elicit an inflammatory immune response. Stable, functional mobility of the vaccine-TLR protein binding interface was confirmed by the Normal Mode Analysis. The in-silico cloning model demonstrated the efficacy of the construct vaccine along with the identified epitopes against SARS-CoV-2. Taken together, our proposed in-silico vaccine candidate has potent efficacy against COVID-19 infection, and successive research work might validate its effectiveness in in vitro and in vivo models.

6.
J Med Virol ; 92(6): 618-631, 2020 06.
Article in English | MEDLINE | ID: covidwho-141989

ABSTRACT

Recently, a novel coronavirus (SARS-COV-2) emerged which is responsible for the recent outbreak in Wuhan, China. Genetically, it is closely related to SARS-CoV and MERS-CoV. The situation is getting worse and worse, therefore, there is an urgent need for designing a suitable peptide vaccine component against the SARS-COV-2. Here, we characterized spike glycoprotein to obtain immunogenic epitopes. Next, we chose 13 Major Histocompatibility Complex-(MHC) I and 3 MHC-II epitopes, having antigenic properties. These epitopes are usually linked to specific linkers to build vaccine components and molecularly dock on toll-like receptor-5 to get binding affinity. Therefore, to provide a fast immunogenic profile of these epitopes, we performed immunoinformatics analysis so that the rapid development of the vaccine might bring this disastrous situation to the end earlier.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptor 5/chemistry , Viral Vaccines/chemistry , Amino Acid Sequence , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , COVID-19 Vaccines , Computational Biology/methods , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Molecular Docking Simulation , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/immunology , Vaccines, Subunit , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL