Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur Rev Med Pharmacol Sci ; 25(15): 5063-5069, 2021 08.
Article in English | MEDLINE | ID: covidwho-1346861

ABSTRACT

OBJECTIVE: Vaccine-induced immune thrombocytopenia (VITT) is a new syndrome occurring primarily in healthy young adults, with a female predominance, after receiving the first dose of ChAdOx1 nCoV-19 vaccine. We describe VITT syndrome characterized by severe thrombosis and thrombocytopenia found in our patient, with fatal outcome. CASE REPORT: A 58-year-old man, after 13 days from the first administration of ChAdOx1 nCoV-19 vaccine (AstraZeneca), presented with abdominal pain, diarrhea and vomitus. Laboratory tests revealed a severe thrombocytopenia, low fibrinogen serum levels and marked increase of D-dimer serum levels. The patient quickly developed a multiple organ failure, till death, three days after the hospital admission. RESULTS: At histology, in the lungs, interalveolar septa appeared thickened with microthrombi in the capillaries and veins. Interalveolar septa appeared thickened and showed vascular proliferation. Thrombi were detected in the capillaries of glomerular tufts. In the hearth, thrombi were observed in veins and capillaries. In the liver, voluminous fibrin thrombi were diffusely observed in the branches of the portal vein. Microthrombi were also found in the vasa vasorum of the wall of abdominal aorta. In the brain, microthrombi were observed in the capillaries of the choroid plexuses. Diffuse hemorrhagic necrosis was observed in the intestinal wall with marked congestion of the venous vessels. CONCLUSIONS: In our patient, the majority of data necessary for a VITT final diagnosis were present: thrombocytopenia and thrombosis in pulmonary, portal, hepatic, renal and mesenteric veins, associated with a marked increase of D-dimer serum levels. The finding of cerebral thrombosis in choroid plexuses, is a new finding in VITT. These features are suggestive for a very aggressive form of VITT.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Purpura, Thrombocytopenic, Idiopathic/etiology , Thrombosis/etiology , Aorta/pathology , COVID-19/blood , COVID-19 Vaccines/administration & dosage , Choroid Plexus/pathology , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Ileum/pathology , Kidney/pathology , Liver/pathology , Lung/pathology , Male , Middle Aged , Myocardium/pathology , Purpura, Thrombocytopenic, Idiopathic/blood , Thrombosis/blood
2.
Eur Rev Med Pharmacol Sci ; 25(10): 3772-3790, 2021 05.
Article in English | MEDLINE | ID: covidwho-1264762

ABSTRACT

Multiple epidemiological studies have suggested that industrialization and progressive urbanization should be considered one of the main factors responsible for the rising of atherosclerosis in the developing world. In this scenario, the role of trace metals in the insurgence and progression of atherosclerosis has not been clarified yet. In this paper, the specific role of selected trace elements (magnesium, zinc, selenium, iron, copper, phosphorus, and calcium) is described by focusing on the atherosclerotic prevention and pathogenesis plaque. For each element, the following data are reported: daily intake, serum levels, intra/extracellular distribution, major roles in physiology, main effects of high and low levels, specific roles in atherosclerosis, possible interactions with other trace elements, and possible influences on plaque development. For each trace element, the correlations between its levels and clinical severity and outcome of COVID-19 are discussed. Moreover, the role of matrix metalloproteinases, a family of zinc-dependent endopeptidases, as a new medical therapeutical approach to atherosclerosis is discussed. Data suggest that trace element status may influence both atherosclerosis insurgence and plaque evolution toward a stable or an unstable status. However, significant variability in the action of these traces is evident: some - including magnesium, zinc, and selenium - may have a protective role, whereas others, including iron and copper, probably have a multi-faceted and more complex role in the pathogenesis of the atherosclerotic plaque. Finally, calcium and phosphorus are implicated in the calcification of atherosclerotic plaques and in the progression of the plaque toward rupture and severe clinical complications. In particular, the role of calcium is debated. Focusing on the COVID-19 pandemia, optimized magnesium and zinc levels are indicated as important protective tools against a severe clinical course of the disease, often related to the ability of SARS-CoV-2 to cause a systemic inflammatory response, able to transform a stable plaque into an unstable one, with severe clinical complications.


Subject(s)
Atherosclerosis/pathology , Trace Elements/metabolism , Atherosclerosis/metabolism , COVID-19/pathology , COVID-19/virology , Calcium/blood , Calcium/metabolism , Copper/blood , Copper/metabolism , Humans , Iron/blood , Iron/metabolism , Magnesium/blood , Magnesium/metabolism , Matrix Metalloproteinases/metabolism , Phosphorus/blood , Phosphorus/metabolism , Risk , SARS-CoV-2/isolation & purification , Selenium/blood , Selenium/metabolism , Severity of Illness Index , Trace Elements/blood , Zinc/blood , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL