Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Sci Rep ; 11(1): 7107, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1157915


Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 enters cells via angiotensin-Converting Enzyme 2 (ACE2) receptors, highly expressed in nasal epithelium with parallel high infectivity.1,2 The nasal epigenome is in direct contact with the environment and could explain COVID-19 disparities by reflecting social and environmental influences on ACE2 regulation. We collected nasal swabs from anterior nares of 547 children, measured DNA methylation (DNAm), and tested differences at 15 ACE2 CpGs by sex, age, race/ethnicity and epigenetic age. ACE2 CpGs were differentially methylated by sex with 12 sites having lower DNAm (mean = 12.71%) and 3 sites greater DNAm (mean = 1.45%) among females relative to males. We observed differential DNAm at 5 CpGs for Hispanic females (mean absolute difference = 3.22%) and lower DNAm at 8 CpGs for Black males (mean absolute difference = 1.33%), relative to white participants. Longer DNAm telomere length was associated with greater ACE2 DNAm at 11 and 13 CpGs among males (mean absolute difference = 7.86%) and females (mean absolute difference = 8.21%), respectively. Nasal ACE2 DNAm differences could contribute to our understanding COVID-19 severity and disparities reflecting upstream environmental and social influences. Findings need to be confirmed among adults and patients with risk factors for COVID-19 severity.

Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , DNA Methylation , Nasal Mucosa/metabolism , Adolescent , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/virology , Child , Female , Humans , Male , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index
Sci Total Environ ; 730: 139144, 2020 Aug 15.
Article in English | MEDLINE | ID: covidwho-196797


The spread of the 2019 novel coronavirus (COVID-19) has challenged governments to develop public policies to reduce the load of the COVID-19 on health care systems, which is commonly referred to as "flattening the curve". This study aims to address this issue by proposing a spatial multicriteria approach to estimate the risk of the Brazilian health care system, by municipality, to exceed the health care capacity because of an influx of patients infected with the COVID-19. We estimated this risk for 5572 municipalities in Brazil using a combination of a multicriteria decision-making approach with spatial analysis to estimate the exceedance risk, and then, we examined the risk variation by designing 5 control intervention scenarios (3 scenarios representing reduction on social contacts, and 2 scenarios representing investment on health care system). For the baseline scenario using an average infection rate across Brazil, we estimated a mean Hospital Bed Capacity (HBC) value of -16.73, indicating that, on average, the Brazilian municipalities will have a deficit of approximately 17 beds. This deficit is projected to occur in 3338 municipalities with the north and northeast regions being at the greatest risk of exceeding health care capacity due to the COVID-19. The intervention scenarios indicate across all of Brazil that they could address the bed shortage, with an average of available beds between 23 and 32. However, when we consider the shortages at a municipal scale, bed exceedances still occur for at least 2119 municipalities in the most effective intervention scenario. Our findings are essential to identify priority areas, to compare populations, and to provide options for government agencies to act. This study can be used to provide support for the creation of effective health public policies for national, regional, and local intervention.

Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Brazil , COVID-19 , Cities , Hospital Bed Capacity , Humans , SARS-CoV-2