Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Immunol Rev ; 2022 Jun 05.
Article in English | MEDLINE | ID: covidwho-1879045

ABSTRACT

Antibodies against epitopes in S1 give the most accurate CoP against infection by the SARS-CoV-2 coronavirus. Measurement of those antibodies by neutralization or binding assays both have predictive value, with binding antibody titers giving the highest statistical correlation. However, the protective functions of antibodies are multiple. Antibodies with multiple functions other than neutralization influence efficacy. The role of cellular responses can be discerned with respect to CD4+ T cells and their augmentation of antibodies, and with respect to CD8+ cells with regard to control of viral replication, particularly in the presence of insufficient antibody. More information is needed on mucosal responses.

2.
Vaccines (Basel) ; 10(6)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1869857

ABSTRACT

Assessing COVID-19 vaccine effectiveness against emerging SARS-CoV-2 variants is crucial for determining future vaccination strategies and other public health strategies. When clinical effectiveness data are unavailable, a common method of assessing vaccine performance is to utilize neutralization assays using post-vaccination sera. Neutralization studies are typically performed across a wide array of settings, populations and vaccination strategies, and using different methodologies. For any comparison and meta-analysis to be meaningful, the design and methodology of the studies used must at minimum address aspects that confer a certain degree of reliability and comparability. We identified and characterized three important categories in which studies differ (cohort details, assay details and data reporting details) and that can affect the overall reliability and/or usefulness of neutralization assay results. We define reliability as a measure of methodological accuracy, proper study setting concerning subjects, samples and viruses, and reporting quality. Each category comprises a set of several relevant key parameters. To each parameter, we assigned a possible impact (ranging from low to high) on overall study reliability depending on its potential to influence the results. We then developed a reliability assessment tool that assesses the aggregate reliability of a study across all parameters. The reliability assessment tool provides explicit selection criteria for inclusion of comparable studies in meta-analyses of neutralization activity of SARS-CoV-2 variants in post-vaccination sera and can also both guide the design of future neutralization studies and serve as a checklist for including important details on key parameters in publications.

3.
Sci Rep ; 12(1): 8550, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1852503

ABSTRACT

Some social settings such as households and workplaces, have been identified as high risk for SARS-CoV-2 transmission. Identifying and quantifying the importance of these settings is critical for designing interventions. A tightly-knit religious community in the UK experienced a very large COVID-19 epidemic in 2020, reaching 64.3% seroprevalence within 10 months, and we surveyed this community both for serological status and individual-level attendance at particular settings. Using these data, and a network model of people and places represented as a stochastic graph rewriting system, we estimated the relative contribution of transmission in households, schools and religious institutions to the epidemic, and the relative risk of infection in each of these settings. All congregate settings were important for transmission, with some such as primary schools and places of worship having a higher share of transmission than others. We found that the model needed a higher general-community transmission rate for women (3.3-fold), and lower susceptibility to infection in children to recreate the observed serological data. The precise share of transmission in each place was related to assumptions about the internal structure of those places. Identification of key settings of transmission can allow public health interventions to be targeted at these locations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Child , Female , Humans , Jews , Seroepidemiologic Studies , United Kingdom/epidemiology
4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-334972

ABSTRACT

Omicron, a highly transmissible SARS-CoV-2, emerged in November 2021. The high mutation rates within spike protein of Omicron raised concerns about increased breakthrough infections among the vaccinated. We tested cross-reactivity of antibodies induced by UB-612 against Omicron and other variants. After 2 doses, UB-612 elicited low levels of neutralization antibodies against ancestral virus and Omicron. A booster dose delivered 7-9 months after primary vaccination dramatically increased antibody levels, with only a 1.4-fold loss in neutralization titer against Omicron compared to the ancestral strain. Using a model bridging vaccine efficacy with ancestral virus RBD binding antibody responses, predicted efficacy against symptomatic COVID-19 after UB-612 booster is estimated at 95%. UB-612 is anticipated to be a potent booster against current and emerging SARS-CoV-2 variants. One-Sentence Summary UB-612 booster induced broadly neutralizing antibodies against Omicron and is presumed to be protective against COVID-19.

5.
Nat Rev Immunol ; 22(6): 333-334, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1799586
6.
Nat Cancer ; 3(5): 552-564, 2022 May.
Article in English | MEDLINE | ID: covidwho-1764216

ABSTRACT

Patients with hematological malignancies are at increased risk of severe COVID-19 outcomes due to compromised immune responses, but the insights of these studies have been compromised due to intrinsic limitations in study design. Here we present the PROSECO prospective observational study ( NCT04858568 ) on 457 patients with lymphoma that received two or three COVID-19 vaccine doses. We show undetectable humoral responses following two vaccine doses in 52% of patients undergoing active anticancer treatment. Moreover, 60% of patients on anti-CD20 therapy had undetectable antibodies following full vaccination within 12 months of receiving their anticancer therapy. However, 70% of individuals with indolent B-cell lymphoma displayed improved antibody responses following booster vaccination. Notably, 63% of all patients displayed antigen-specific T-cell responses, which increased after a third dose irrespective of their cancer treatment status. Our results emphasize the urgency of careful monitoring of COVID-19-specific immune responses to guide vaccination schemes in these vulnerable populations.


Subject(s)
COVID-19 , Neoplasms , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2 , United Kingdom/epidemiology
7.
Clin Infect Dis ; 74(7): 1220-1229, 2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1706235

ABSTRACT

BACKGROUND: Antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been shown to neutralize the virus in vitro and prevent disease in animal challenge models on reexposure. However, the current understanding of SARS-CoV-2 humoral dynamics and longevity is conflicting. METHODS: The COVID-19 Staff Testing of Antibody Responses Study (Co-Stars) prospectively enrolled 3679 healthcare workers to comprehensively characterize the kinetics of SARS-CoV-2 spike protein (S), receptor-binding domain, and nucleoprotein (N) antibodies in parallel. Participants screening seropositive had serial monthly serological testing for a maximum of 7 months with the Meso Scale Discovery Assay. Survival analysis determined the proportion of seroreversion, while 2 hierarchical gamma models predicted the upper and lower bounds of long-term antibody trajectory. RESULTS: A total of 1163 monthly samples were provided from 349 seropositive participants. At 200 days after symptoms, >95% of participants had detectable S antibodies, compared with 75% with detectable N antibodies. S antibody was predicted to remain detectable in 95% of participants until 465 days (95% confidence interval, 370-575 days) using a "continuous-decay" model and indefinitely using a "decay-to-plateau" model to account for antibody secretion by long-lived plasma cells. S-antibody titers were correlated strongly with surrogate neutralization in vitro (R2 = 0.72). N antibodies, however, decayed rapidly with a half-life of 60 days (95% confidence interval, 52-68 days). CONCLUSIONS: The Co-Stars data presented here provide evidence for long-term persistence of neutralizing S antibodies. This has important implications for the duration of functional immunity after SARS-CoV-2 infection. In contrast, the rapid decay of N antibodies must be considered in future seroprevalence studies and public health decision-making. This is the first study to establish a mathematical framework capable of predicting long-term humoral dynamics after SARS-CoV-2 infection. CLINICAL TRIALS REGISTRATION: NCT04380896.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Seroepidemiologic Studies
8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-311292

ABSTRACT

Correlates of protection for COVID-19 vaccines are urgently needed to license and deploy additional vaccines. We measured immune responses to four COVID-19 vaccines of proven efficacy using a single serological platform calibrated to the international standard. IgG anti-Spike antibodies correlated significantly with efficacies for original virus and alpha variant and were highly correlated with ID50 neutralization in a validated pseudoviral assay. The protective threshold for each vaccine was calculated for IgG anti-Spike antibody. The mean protective threshold for all vaccine studies was 154 BAU/ml (95%CI 42-559), and for the vaccine studies with antibody distributions that enabled precise estimation of thresholds (i.e. leaving out 2-dose mRNA studies) was 60 BAU/ml (95%CI 35-102). We propose that the proportion of individuals with responses above the appropriate protective threshold together with the geometric mean concentration can be used in comparative non-inferiority studies with licensed vaccines to ensure that new vaccines will be efficacious.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-305490

ABSTRACT

A significant correlation has been shown between the binding antibody responses against original SARS-CoV-2-S-protein all performed in one laboratory and vaccine efficacy of four approved COVID-19 vaccines. We therefore assessed the immune response against original SARS-CoV-2 elicited by the adjuvanted S-Trimer vaccine, SCB-2019 + CpG/alum, in the same assay and laboratory. When compared with four approved vaccines immune responses to SCB-2019 predicted 81% − 94% efficacy against the original strain and 75–94% against the Alpha variant (B.1.1.7). Immunogenicity comparisons to original strain and variants of concern (VOC) should be considered as a basis for authorization of vaccines because efficacy studies now have predominantly VOC cases.

10.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328692

ABSTRACT

Background: Serological testing is used to quantify SARS-CoV-2 seroprevalence, guide booster vaccination and select patients for anti-SARS-CoV-2 antibodies therapy. However, our understanding of how serological tests perform as time passes after infection is limited. Methods: : Four assays were compared in parallel: 1) the multiplexed spike, nucleoprotein and receptor binding domain Meso Scale Discovery (MSD) assay 2) the Roche Elecsys-Nucleoprotein assay (Roche-N) 3) the Roche Spike assay (Roche-S) and 4) the Abbott Nucleoprotein assay (Abbott-N) on serial positive monthly samples from hospital staff up to 200 days following infection as part of the Co-Stars study. Results: : We demonstrate that 50% of the Abbott-N assays give a negative result after 175 days (median survival time 95% CI 168-185 days) while the Roche-N assay (93% survival probability at 200 days, 95% CI 88-97%) maintained seropositivity. The MSD spike (97% survival probability at 200 days, 95% CI 95-99%) and the Roche-S assay (95% survival probability at 200 days, 95% CI 93-97%) also remained seropositive. The best performing quantitative Roche-S assay showed no evidence of waning Spike antibody titres over 200-days. Conclusions: : The Abbott-N assay fails to detect SARS-CoV-2 antibodies as time passes since infection. In contrast the Roche and the MSD assays maintained high sensitivity. The limitations of the Abbott assay must be considered in clinical decision making. The long duration of detectable neutralizing spike antibody titres by the quantitative Roche-S assay provides further evidence in support of long-lasting SARS-CoV-2 protection to pre-existing strains of SARS-CoV-2 following natural infection. Trial registration Co-STARs study was registered with ClinicalTrials.gov on May 8th, 2020, with trial number NCT04380896 (www.clinicaltrials.gov, NCT04380896)

11.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296800

ABSTRACT

SUMMARY SARS-CoV-2 vaccination protects against COVID-19. Antibodies and antigen-specific T-cell responses against the spike domain can be used to measure vaccine immune response. Individuals with lymphoma have defects in humoral and cellular immunity that may compromise vaccine response. In this prospective observational study of 457 participants with lymphoma, 52% of participants vaccinated on treatment had undetectable anti-spike IgG antibodies compared to 9% who were not on treatment. Marked impairment was observed in those receiving anti- CD20 antibody within 12 months where 60% had undetectable antibodies compared to 11% on chemotherapy, which persisted despite three vaccine doses. Overall, 63% had positive T-cell responses irrespective of treatment. Individuals with indolent B-cell lymphoma have impaired antibody and cellular responses that were independent of treatment. The significant reduction and heterogeneity in immune responses in these individuals emphasise the urgent need for immune response monitoring and alternative prophylactic strategies to protect against COVID- 19.

12.
Vaccine ; 40(2): 306-315, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1569121

ABSTRACT

Correlates of protection for COVID-19 vaccines are urgently needed to license additional vaccines. We measured immune responses to four COVID-19 vaccines of proven efficacy using a single serological platform. IgG anti-Spike antibodies were highly correlated with ID50 neutralization in a validated pseudoviral assay and correlated significantly with efficacies for protection against infection with wild-type, alpha and delta variant SARS-CoV-2 virus. The protective threshold for each vaccine was calculated for IgG anti-Spike antibody. The mean protective threshold for all vaccine studies for WT virus was 154 BAU/ml (95 %CI 42-559), and for studies with antibody distributions that enabled precise estimation of thresholds (i.e. leaving out 2-dose mRNA regimens) was 60 BAU/ml (95 %CI 35-102). We propose that the proportion of individuals with responses above the appropriate protective threshold together with the geometric mean concentration can be used in comparative non-inferiority studies with licensed vaccines to ensure that new vaccines will be efficacious.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus
13.
J Infect Dis ; 225(2): 327-331, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1566021

ABSTRACT

A significant correlation has been shown between the binding antibody responses against original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and vaccine efficacy of 4 approved coronavirus disease 2019 vaccines. We therefore assessed the immune response against original SARS-CoV-2 elicited by the adjuvanted S-Trimer vaccine, SCB-2019 + CpG/alum, in the same assay and laboratory. Responses to SCB-2019 were comparable or superior for antibody to original and Alpha variant when compared with 4 approved vaccines. The comparison accurately predicted success of the recently reported efficacy trial of SCB-2019 vaccine. Immunogenicity comparisons to original strain and variants of concern should be considered as a basis for authorization of vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Immunogenicity, Vaccine , Pandemics/prevention & control , SARS-CoV-2/immunology , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit
14.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: covidwho-1510600

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
15.
Pediatr Infect Dis J ; 40(12): e516-e519, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1416157

ABSTRACT

Antibodies to seasonal human-coronaviruses (sHCoV) may cross-protect against SARS-CoV-2. We investigated antibody responses in biobanked serum obtained before the pandemic from infants with polymerase chain reaction-confirmed sHCoV. Among 141 samples with antibodies to sHCoV, 4 (2.8%) were positive for SARS-CoV-2-S1 and 8 (5.7%) for SARS-CoV-2-S2. Antibodies to sHCoV rarely cross-react with SARS-CoV-2 antigens and are unlikely to account for mild pediatric illness.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Coronavirus Infections/virology , Coronavirus/immunology , SARS-CoV-2/immunology , Seasons , COVID-19/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Cross Reactions , Humans , Pneumonia, Viral , South Africa/epidemiology
17.
Clin Infect Dis ; 74(7): 1220-1229, 2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1294705

ABSTRACT

BACKGROUND: Antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been shown to neutralize the virus in vitro and prevent disease in animal challenge models on reexposure. However, the current understanding of SARS-CoV-2 humoral dynamics and longevity is conflicting. METHODS: The COVID-19 Staff Testing of Antibody Responses Study (Co-Stars) prospectively enrolled 3679 healthcare workers to comprehensively characterize the kinetics of SARS-CoV-2 spike protein (S), receptor-binding domain, and nucleoprotein (N) antibodies in parallel. Participants screening seropositive had serial monthly serological testing for a maximum of 7 months with the Meso Scale Discovery Assay. Survival analysis determined the proportion of seroreversion, while 2 hierarchical gamma models predicted the upper and lower bounds of long-term antibody trajectory. RESULTS: A total of 1163 monthly samples were provided from 349 seropositive participants. At 200 days after symptoms, >95% of participants had detectable S antibodies, compared with 75% with detectable N antibodies. S antibody was predicted to remain detectable in 95% of participants until 465 days (95% confidence interval, 370-575 days) using a "continuous-decay" model and indefinitely using a "decay-to-plateau" model to account for antibody secretion by long-lived plasma cells. S-antibody titers were correlated strongly with surrogate neutralization in vitro (R2 = 0.72). N antibodies, however, decayed rapidly with a half-life of 60 days (95% confidence interval, 52-68 days). CONCLUSIONS: The Co-Stars data presented here provide evidence for long-term persistence of neutralizing S antibodies. This has important implications for the duration of functional immunity after SARS-CoV-2 infection. In contrast, the rapid decay of N antibodies must be considered in future seroprevalence studies and public health decision-making. This is the first study to establish a mathematical framework capable of predicting long-term humoral dynamics after SARS-CoV-2 infection. CLINICAL TRIALS REGISTRATION: NCT04380896.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Seroepidemiologic Studies
18.
Vaccine ; 39(32): 4423-4428, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1240645

ABSTRACT

A correlate of protection (CoP) is urgently needed to expedite development of additional COVID-19 vaccines to meet unprecedented global demand. To assess whether antibody titers may reasonably predict efficacy and serve as the basis of a CoP, we evaluated the relationship between efficacy and in vitro neutralizing and binding antibodies of 7 vaccines for which sufficient data have been generated. Once calibrated to titers of human convalescent sera reported in each study, a robust correlation was seen between neutralizing titer and efficacy (ρ = 0.79) and binding antibody titer and efficacy (ρ = 0.93), despite geographically diverse study populations subject to different forces of infection and circulating variants, and use of different endpoints, assays, convalescent sera panels and manufacturing platforms. Together with evidence from natural history studies and animal models, these results support the use of post-immunization antibody titers as the basis for establishing a correlate of protection for COVID-19 vaccines.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , SARS-CoV-2
19.
Lancet Reg Health Eur ; 6: 100127, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1233528

ABSTRACT

BACKGROUND: Ethnic and religious minorities have been disproportionately affected by SARS-CoV-2 worldwide. The UK strictly-Orthodox Jewish community has been severely affected by the pandemic. This group shares characteristics with other ethnic minorities including larger family sizes, higher rates of household crowding and relative socioeconomic deprivation. We studied a UK strictly-Orthodox Jewish population to understand transmission of COVID-19 within this community. METHODS: We performed a household-focused cross-sectional SARS-CoV-2 serosurvey between late-October and early December 2020 prior to the third national lockdown. Randomly-selected households completed a standardised questionnaire and underwent serological testing with a multiplex assay for SARS-CoV-2 IgG antibodies. We report clinical illness and testing before the serosurvey, seroprevalence stratified by age and sex. We used random-effects models to identify factors associated with infection and antibody titres. FINDINGS: A total of 343 households, consisting of 1,759 individuals, were recruited. Serum was available for 1,242 participants. The overall seroprevalence for SARS-CoV-2 was 64.3% (95% CI 61.6-67.0%). The lowest seroprevalence was 27.6% in children under 5 years and rose to 73.8% in secondary school children and 74% in adults. Antibody titres were higher in symptomatic individuals and declined over time since reported COVID-19 symptoms, with the decline more marked for nucleocapsid titres. INTERPRETATION: In this tight-knit religious minority population in the UK, we report one of the highest SARS-CoV-2 seroprevalence levels in the world to date, which was markedly higher than the reported 10% seroprevalence in London at the time of the study. In the context of this high force of infection, all age groups experienced a high burden of infection. Actions to reduce the burden of disease in this and other minority populations are urgently required. FUNDING: This work was jointly funded by UKRI and NIHR [COV0335; MR/V027956/1], a donation from the LSHTM Alumni COVID-19 response fund, HDR UK, the MRC and the Wellcome Trust.

20.
N Engl J Med ; 384(23): 2202-2211, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1189334

ABSTRACT

BACKGROUND: The mainstay of control of the coronavirus disease 2019 (Covid-19) pandemic is vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Within a year, several vaccines have been developed and millions of doses delivered. Reporting of adverse events is a critical postmarketing activity. METHODS: We report findings in 23 patients who presented with thrombosis and thrombocytopenia 6 to 24 days after receiving the first dose of the ChAdOx1 nCoV-19 vaccine (AstraZeneca). On the basis of their clinical and laboratory features, we identify a novel underlying mechanism and address the therapeutic implications. RESULTS: In the absence of previous prothrombotic medical conditions, 22 patients presented with acute thrombocytopenia and thrombosis, primarily cerebral venous thrombosis, and 1 patient presented with isolated thrombocytopenia and a hemorrhagic phenotype. All the patients had low or normal fibrinogen levels and elevated d-dimer levels at presentation. No evidence of thrombophilia or causative precipitants was identified. Testing for antibodies to platelet factor 4 (PF4) was positive in 22 patients (with 1 equivocal result) and negative in 1 patient. On the basis of the pathophysiological features observed in these patients, we recommend that treatment with platelet transfusions be avoided because of the risk of progression in thrombotic symptoms and that the administration of a nonheparin anticoagulant agent and intravenous immune globulin be considered for the first occurrence of these symptoms. CONCLUSIONS: Vaccination against SARS-CoV-2 remains critical for control of the Covid-19 pandemic. A pathogenic PF4-dependent syndrome, unrelated to the use of heparin therapy, can occur after the administration of the ChAdOx1 nCoV-19 vaccine. Rapid identification of this rare syndrome is important because of the therapeutic implications.


Subject(s)
Autoantibodies/blood , COVID-19 Vaccines/immunology , Platelet Factor 4/immunology , Thrombocytopenia/immunology , Thrombosis/immunology , Adult , Aged , Algorithms , Antibodies, Viral/blood , Anticoagulants/adverse effects , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Flow Cytometry , Heparin/adverse effects , Humans , Male , Middle Aged , Thrombocytopenia/etiology , Thrombosis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL