Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Year range
1.
Proc Natl Acad Sci U S A ; 2020 Nov 25.
Article in English | MEDLINE | ID: covidwho-947594

ABSTRACT

Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-stimulated gene that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an IFN-stimulated gene screen against vesicular stomatitis virus (VSV)-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of SARS-CoV-2 replication. Internalized 25HC accumulates in the late endosomes and potentially restricts SARS-CoV-2 spike protein catalyzed membrane fusion via blockade of cholesterol export. Our results highlight one of the possible antiviral mechanisms of 25HC and provide the molecular basis for its therapeutic development.

2.
bioRxiv ; 2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-808504

ABSTRACT

Pathogenic coronaviruses represent a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified several small-molecule inhibitors that potently block the replication of the newly emerged severe acute respiratory syndrome virus 2 (SARS-CoV-2). Two compounds, nitazoxanide and JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with an EC 50 of 4.90 µM and 0.69 µM, respectively, with specificity indices of greater than 150. Both inhibitors had in vitro antiviral activity in multiple cell types against some DNA and RNA viruses, including porcine transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved body weight gain and survival. These results highlight the potential utility of nitazoxanide and JIB-04 as antiviral agents against SARS-CoV-2 and other viral pathogens.

3.
Sci Immunol ; 5(47)2020 05 13.
Article in English | MEDLINE | ID: covidwho-260039

ABSTRACT

Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA are frequently observed in COVID-19 patients. However, it is unclear whether SARS-CoV-2 replicates in the human intestine and contributes to possible fecal-oral transmission. Here, we report productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. Expression of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, facilitated SARS-CoV-2 spike fusogenic activity and promoted virus entry into host cells. We also demonstrate that viruses released into the intestinal lumen were inactivated by simulated human colonic fluid, and infectious virus was not recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.


Subject(s)
Betacoronavirus/physiology , Enterocytes/virology , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Virus Internalization , Animals , Cell Line , Duodenum/cytology , Enterocytes/pathology , Humans , Mice , Organoids/virology , Peptidyl-Dipeptidase A/metabolism , Rotavirus/physiology , Vesiculovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL