Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 14(6)2022 May 29.
Article in English | MEDLINE | ID: mdl-35746658

ABSTRACT

Measles virus (MV) is a highly contagious respiratory virus responsible for outbreaks associated with significant morbidity and mortality among children and young adults. Although safe and effective measles vaccines are available, the COVID-19 pandemic has resulted in vaccination coverage gaps that may lead to the resurgence of measles when restrictions are lifted. This puts individuals who cannot be vaccinated, such as young infants and immunocompromised individuals, at risk. Therapeutic interventions are complicated by the long incubation time of measles, resulting in a narrow treatment window. At present, the only available WHO-advised option is treatment with intravenous immunoglobulins, although this is not approved as standard of care. Antivirals against measles may contribute to intervention strategies to limit the impact of future outbreaks. Here, we review previously described antivirals and antiviral assays, evaluate the antiviral efficacy of a number of compounds to inhibit MV dissemination in vitro, and discuss potential application in specific target populations. We conclude that broadly reactive antivirals could strengthen existing intervention strategies to limit the impact of measles outbreaks.


Subject(s)
COVID-19 , Measles , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Child , Humans , Measles Vaccine , Measles virus , Pandemics , Vaccination
2.
J Allergy Clin Immunol ; 149(6): 1949-1957, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35421449

ABSTRACT

BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS: In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Genetic Diseases, Inborn , Immunologic Deficiency Syndromes , /blood , /therapeutic use , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/immunology , Genetic Diseases, Inborn/blood , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Humans , Immunologic Deficiency Syndromes/blood , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
mBio ; : e0383121, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35164568

ABSTRACT

Human parainfluenza virus type 3 (HPIV-3) is a significant cause of lower respiratory tract infections, with the most severe disease in young infants, immunocompromised individuals, and the elderly. HPIV-3 infections are currently untreatable with licensed therapeutics, and prophylactic and therapeutic options are needed for patients at risk. To complement existing human airway models of HPIV-3 infection and develop an animal model to assess novel intervention strategies, we evaluated infection and transmission of HPIV-3 in ferrets. A well-characterized human clinical isolate (CI) of HPIV-3 engineered to express enhanced green fluorescent protein (rHPIV-3 CI-1-EGFP) was passaged on primary human airway epithelial cells (HAE) or airway organoids (AO) to avoid tissue culture adaptations. rHPIV3 CI-1-EGFP infection was assessed in vitro in ferret AO and in ferrets in vivo. Undifferentiated and differentiated ferret AO cultures supported rHPIV-3 CI-1-EGFP replication, but the ferret primary airway cells from AO were less susceptible and permissive than HAE. In vivo rHPIV-3 CI-1-EGFP replicated in the upper and lower airways of ferrets and targeted respiratory epithelial cells, olfactory epithelial cells, type I pneumocytes, and type II pneumocytes. The infection efficiently induced specific antibody responses. Taken together, ferrets are naturally susceptible to HPIV-3 infection; however, limited replication was observed that led to neither overt clinical signs nor ferret-to-ferret transmission. However, in combination with ferret AO, the ferret model of HPIV-3 infection, tissue tropism, and neutralizing antibodies complements human ex vivo lung models and can be used as a platform for prevention and treatment studies for this important respiratory pathogen. IMPORTANCE HPIV-3 is an important cause of pediatric disease and significantly impacts the elderly. Increasing numbers of immunocompromised patients suffer from HPIV-3 infections, often related to problems with viral clearance. There is a need to model HPIV-3 infections in vitro and in vivo to evaluate novel prophylaxis and treatment options. Currently existing animal models lack the potential for studying animal-to-animal transmission or the effect of immunosuppressive therapy. Here, we describe the use of the ferret model in combination with authentic clinical viruses to further complement human ex vivo models, providing a platform to study approaches to prevent and treat HPIV-3 infection. Although we did not detect ferret-to-ferret transmission in our studies, these studies lay the groundwork for further refinement of the ferret model to immunocompromised ferrets, allowing for studies of severe HPIV-3-associated disease. Such models for preclinical evaluation of prophylaxis and antivirals can contribute to reducing the global health burden of HPIV-3.

4.
Sci Immunol ; 7(69): eabo2202, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35113647

ABSTRACT

The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T cell responses targeting SARS-CoV-2 D614G [wild type (WT)] and the Beta, Delta, and Omicron variants of concern in a cohort of 60 health care workers after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273, or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which substantially decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays showed consistent cross-neutralization of the Beta and Delta variants, but neutralization of Omicron was significantly lower or absent. BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV2 priming partially restored neutralization of the Omicron variant, but responses were still up to 17-fold decreased compared with WT. SARS-CoV-2-specific T cells were detected up to 6 months after all vaccination regimens, with more consistent detection of specific CD4+ than CD8+ T cells. No significant differences were detected between WT- and variant-specific CD4+ or CD8+ T cell responses, including Omicron, indicating minimal escape at the T cell level. This study shows that vaccinated individuals retain T cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations are needed to further restore Omicron cross-neutralization by antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans
5.
Sci Immunol ; 6(59)2021 05 25.
Article in English | MEDLINE | ID: mdl-34035118

ABSTRACT

The emergence of SARS-CoV-2 variants harboring mutations in the spike (S) protein has raised concern about potential immune escape. Here, we studied humoral and cellular immune responses to wild type SARS-CoV-2 and the B.1.1.7 and B.1.351 variants of concern in a cohort of 121 BNT162b2 mRNA-vaccinated health care workers (HCW). Twenty-three HCW recovered from mild COVID-19 disease and exhibited a recall response with high levels of SARS-CoV-2-specific functional antibodies and virus-specific T cells after a single vaccination. Specific immune responses were also detected in seronegative HCW after one vaccination, but a second dose was required to reach high levels of functional antibodies and cellular immune responses in all individuals. Vaccination-induced antibodies cross-neutralized the variants B.1.1.7 and B.1.351, but the neutralizing capacity and Fc-mediated functionality against B.1.351 was consistently 2- to 4-fold lower than to the homologous virus. In addition, peripheral blood mononuclear cells were stimulated with peptide pools spanning the mutated S regions of B.1.1.7 and B.1.351 to detect cross-reactivity of SARS-CoV-2-specific T cells with variants. Importantly, we observed no differences in CD4+ T-cell activation in response to variant antigens, indicating that the B.1.1.7 and B.1.351 S proteins do not escape T-cell-mediated immunity elicited by the wild type S protein. In conclusion, this study shows that some variants can partially escape humoral immunity induced by SARS-CoV-2 infection or BNT162b2 vaccination, but S-specific CD4+ T-cell activation is not affected by the mutations in the B.1.1.7 and B.1.351 variants.


Subject(s)
Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , Cell Line , Cross Reactions/immunology , Humans , Immunologic Memory/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL