Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Microbiol Spectr ; 10(5): e0173622, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019794

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole-genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA and Bogotá, Colombia (September 2, 2020 to March 2, 2022). We demonstrated almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, and Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlighted distinct target patterns that could be utilized to identify variants not yet defined on the panel, including the Omicron BA.2 and other sublineages. These findings exemplified the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones. IMPORTANCE The continued circulation of SARS-CoV-2 amid limited surveillance efforts and inconsistent vaccination of populations has resulted in the emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to informing diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlighted the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated from September 2, 2020 to March 2, 2022 among patients seeking care in our health systems. This assay demonstrated variant-specific signatures of nucleotide/amino acid polymorphisms and underscored its utility for the detection of contemporary and emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Mass Spectrometry , RNA , Nucleotides , Amino Acids
2.
Epidemiology ; 33(6): 797-807, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1985142

ABSTRACT

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Subject(s)
COVID-19 , Disease Outbreaks , Military Personnel , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Female , Humans , Male , Military Personnel/statistics & numerical data , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , United States/epidemiology
3.
BMC Genomics ; 23(1): 510, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1933076

ABSTRACT

BACKGROUND: The SARS-CoV-2 virus is responsible for the COVID-19 pandemic. To better understand the evolution of SARS-CoV-2 early in the pandemic in the Province of Cordoba, Argentina, we performed a comparative genomic analysis of SARS-CoV-2 strains detected in survivors and non-survivors of COVID-19. We also carried out an epidemiological study to find a possible association between the symptoms and comorbidities of these patients with their clinical outcomes. RESULTS: A representative sampling was performed in different cities in the Province of Cordoba. Ten and nine complete SARS-CoV-2 genomes were obtained by next-generation sequencing of nasopharyngeal specimens from non-survivors and survivors, respectively. Phylogenetic and phylodynamic analyses revealed multiple introductions of the most common lineages in South America, including B.1, B.1.1.1, B.1.499, and N.3. Fifty-six mutations were identified, with 14% of those in common between the non-survivor and survivor groups. Specific SARS-CoV-2 mutations for survivors constituted 25% whereas for non-survivors they were 41% of the repertoire, indicating partial selectivity. The non-survivors' variants showed higher diversity in 9 genes, with a majority in Nsp3, while the survivors' variants were detected in 5 genes, with a higher incidence in the Spike protein. At least one comorbidity was present in 60% of non-survivor patients and 33% of survivors. Age 75-85 years (p = 0.018) and hospitalization (p = 0.019) were associated with non-survivor patients. Related to the most common symptoms, the prevalence of fever was similar in both groups, while dyspnea was more frequent among non-survivors and cough among survivors. CONCLUSIONS: This study describes the association of clinical characteristics with the clinical outcomes of survivors and non-survivors of COVID-19 patients, and the specific mutations found in the genome sequences of SARS-CoV-2 in each patient group. Future research on the functional characterization of novel mutations should be performed to understand the role of these variations in SARS-CoV-2 pathogenesis and COVID-19 disease outcomes. These results add new genomic data to better understand the evolution of the SARS-CoV-2 variants that spread in Argentina during the first wave of the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Aged, 80 and over , Argentina/epidemiology , COVID-19/epidemiology , Genome, Viral , Genomics , Humans , Pandemics , Phylogeny , SARS-CoV-2/genetics
4.
Emerg Microbes Infect ; 10(1): 376-383, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-977353

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in domestic and wild cats. However, little is known about natural viral infections of domestic cats, although their importance for modelling disease spread, informing strategies for managing positive human-animal relationships and disease prevention. Here, we describe the SARS-CoV-2 infection in a household of two human adults and sibling cats (one male and two females) using real-time RT-PCR, an ELISA test, viral sequencing, and virus isolation. On May 5th, 2020, the cat-owners tested positive for SARS-CoV-2. Two days later, the male cat showed mild respiratory symptoms and tested positive. Four days after the male cat, the two female cats became positive, asymptomatically. Also, one human and one cat showed antibodies against SARS-CoV-2. All cats excreted detectable SARS-CoV-2 RNA for a shorter duration than humans and viral sequences analysis confirmed human-to-cat transmission. We could not determine if cat-to-cat transmission also occurred.


Subject(s)
COVID-19/veterinary , COVID-19/virology , Cats/virology , Virus Shedding , Adult , Animals , Chile , Female , Genome, Viral , Humans , Male , Middle Aged , RNA, Viral/analysis , SARS-CoV-2/growth & development , SARS-CoV-2/physiology
5.
medRxiv ; 2020 Nov 11.
Article in English | MEDLINE | ID: covidwho-955724

ABSTRACT

Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of coronavirus disease 2019 (COVID-19), we investigated intestinal infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its effect on disease pathogenesis. SARS-CoV-2 was detected in small intestinal enterocytes by immunofluorescence staining or electron microscopy, in 13 of 15 patients studied. High dimensional analyses of GI tissues revealed low levels of inflammation in general, including active downregulation of key inflammatory genes such as IFNG, CXCL8, CXCL2 and IL1B and reduced frequencies of proinflammatory dendritic cell subsets. To evaluate the clinical significance of these findings, examination of two large, independent cohorts of hospitalized patients in the United States and Europe revealed a significant reduction in disease severity and mortality that was independent of gender, age, and examined co-morbid illnesses. The observed mortality reduction in COVID-19 patients with GI symptoms was associated with reduced levels of key inflammatory proteins including IL-6, CXCL8, IL-17A and CCL28 in circulation but was not associated with significant differences in nasopharyngeal viral loads. These data draw attention to organ-level heterogeneity in disease pathogenesis and highlight the role of the GI tract in attenuating SARS-CoV-2-associated inflammation with related mortality benefit. ONE SENTENCE SUMMARY: Intestinal infection with SARS-CoV-2 is associated with a mild inflammatory response and improved clinical outcomes.

7.
N Engl J Med ; 383(25): 2407-2416, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-919364

ABSTRACT

BACKGROUND: The efficacy of public health measures to control the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been well studied in young adults. METHODS: We investigated SARS-CoV-2 infections among U.S. Marine Corps recruits who underwent a 2-week quarantine at home followed by a second supervised 2-week quarantine at a closed college campus that involved mask wearing, social distancing, and daily temperature and symptom monitoring. Study volunteers were tested for SARS-CoV-2 by means of quantitative polymerase-chain-reaction (qPCR) assay of nares swab specimens obtained between the time of arrival and the second day of supervised quarantine and on days 7 and 14. Recruits who did not volunteer for the study underwent qPCR testing only on day 14, at the end of the quarantine period. We performed phylogenetic analysis of viral genomes obtained from infected study volunteers to identify clusters and to assess the epidemiologic features of infections. RESULTS: A total of 1848 recruits volunteered to participate in the study; within 2 days after arrival on campus, 16 (0.9%) tested positive for SARS-CoV-2, 15 of whom were asymptomatic. An additional 35 participants (1.9%) tested positive on day 7 or on day 14. Five of the 51 participants (9.8%) who tested positive at any time had symptoms in the week before a positive qPCR test. Of the recruits who declined to participate in the study, 26 (1.7%) of the 1554 recruits with available qPCR results tested positive on day 14. No SARS-CoV-2 infections were identified through clinical qPCR testing performed as a result of daily symptom monitoring. Analysis of 36 SARS-CoV-2 genomes obtained from 32 participants revealed six transmission clusters among 18 participants. Epidemiologic analysis supported multiple local transmission events, including transmission between roommates and among recruits within the same platoon. CONCLUSIONS: Among Marine Corps recruits, approximately 2% who had previously had negative results for SARS-CoV-2 at the beginning of supervised quarantine, and less than 2% of recruits with unknown previous status, tested positive by day 14. Most recruits who tested positive were asymptomatic, and no infections were detected through daily symptom monitoring. Transmission clusters occurred within platoons. (Funded by the Defense Health Agency and others.).


Subject(s)
COVID-19 Testing , COVID-19/transmission , Disease Transmission, Infectious/statistics & numerical data , Military Personnel , Quarantine , SARS-CoV-2/isolation & purification , Asymptomatic Infections , COVID-19/diagnosis , COVID-19/epidemiology , Genome, Viral , Humans , Male , Phylogeny , Real-Time Polymerase Chain Reaction , Risk Factors , SARS-CoV-2/genetics , South Carolina/epidemiology , Whole Genome Sequencing , Young Adult
8.
Science ; 369(6501): 297-301, 2020 07 17.
Article in English | MEDLINE | ID: covidwho-418857

ABSTRACT

New York City (NYC) has emerged as one of the epicenters of the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. To identify the early transmission events underlying the rapid spread of the virus in the NYC metropolitan area, we sequenced the virus that causes coronavirus disease 2019 (COVID-19) in patients seeking care at the Mount Sinai Health System. Phylogenetic analysis of 84 distinct SARS-CoV-2 genomes indicates multiple, independent, but isolated introductions mainly from Europe and other parts of the United States. Moreover, we found evidence for community transmission of SARS-CoV-2 as suggested by clusters of related viruses found in patients living in different neighborhoods of the city.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/mortality , Epidemiological Monitoring , Female , Geography, Medical , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Phylogeny , Pneumonia, Viral/mortality , Residence Characteristics , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL