Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proteins ; 90(5): 1054-1080, 2022 05.
Article in English | MEDLINE | ID: covidwho-1826109

ABSTRACT

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Subject(s)
COVID-19 , Pandemics , Amino Acids , Humans , Prospective Studies , Proteome , SARS-CoV-2 , Viral Proteins/genetics , Viral Proteins/metabolism
2.
Structure ; 30(1): 55-68.e2, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1500270

ABSTRACT

Structural biologists provide direct insights into the molecular bases of human health and disease. The open-access Protein Data Bank (PDB) stores and delivers three-dimensional (3D) biostructure data that facilitate discovery and development of therapeutic agents and diagnostic tools. We are in the midst of a revolution in vaccinology. Non-infectious mRNA vaccines have been proven during the coronavirus disease 2019 (COVID-19) pandemic. This new technology underpins nimble discovery and clinical development platforms that use knowledge of 3D viral protein structures for societal benefit. The RCSB PDB supports vaccine designers through expert biocuration and rigorous validation of 3D structures; open-access dissemination of structure information; and search, visualization, and analysis tools for structure-guided design efforts. This resource article examines the structural biology underpinning the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mRNA vaccines and enumerates some of the many protein structures in the PDB archive that could guide design of new countermeasures against existing and emerging viral pathogens.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , COVID-19/immunology , Computational Biology/methods , Databases, Protein , Protein Conformation , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , COVID-19/epidemiology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Drug Design , Humans , Internet , Models, Molecular , Pandemics/prevention & control , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Vaccination/methods , Vaccine Development/methods , Viral Proteins/chemistry , Viral Proteins/immunology , Viral Proteins/ultrastructure
3.
IEEE Trans Vis Comput Graph ; 27(2): 722-732, 2021 02.
Article in English | MEDLINE | ID: covidwho-1066570

ABSTRACT

We present a new technique for the rapid modeling and construction of scientifically accurate mesoscale biological models. The resulting 3D models are based on a few 2D microscopy scans and the latest knowledge available about the biological entity, represented as a set of geometric relationships. Our new visual-programming technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we determine the statistical properties of various structural aspects, such as the outer membrane shape, the spatial properties, and the distribution characteristics of the macromolecular elements on the membrane. This information is utilized in the construction of the 3D model. Once all the imaging evidence is incorporated into the model, additional information can be incorporated by interactively defining the rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, and their distances and orientations relative to other structures. These rules are defined through an intuitive 3D interactive visualization as a visual-programming feedback loop. We demonstrate the applicability of our approach on a use case of the modeling procedure of the SARS-CoV-2 virion ultrastructure. This atomistic model, which we present here, can steer biological research to new promising directions in our efforts to fight the spread of the virus.


Subject(s)
COVID-19/virology , Models, Molecular , Models, Statistical , SARS-CoV-2 , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/ultrastructure , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Virion/chemistry , Virion/ultrastructure
4.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-936421

ABSTRACT

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Subject(s)
Computational Biology/methods , Databases, Protein , Macromolecular Substances/chemistry , Protein Conformation , Proteins/chemistry , Bioengineering/methods , Biomedical Research/methods , Biotechnology/methods , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Macromolecular Substances/metabolism , Pandemics , Proteins/genetics , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Software , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
5.
PLoS Biol ; 18(8): e3000815, 2020 08.
Article in English | MEDLINE | ID: covidwho-712731

ABSTRACT

Two illustrations integrate current knowledge about severe acute respiratory syndrome (SARS) coronaviruses and their life cycle. They have been widely used in education and outreach through free distribution as part of a coronavirus-related resource at Protein Data Bank (PDB)-101, the education portal of the RCSB PDB. Scientific sources for creation of the illustrations and examples of dissemination and response are presented.


Subject(s)
Betacoronavirus/growth & development , Biomedical Research/education , Coronavirus Infections/prevention & control , Databases, Protein , Medicine in the Arts , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Animals , Betacoronavirus/physiology , Biomedical Research/methods , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Data Display , Humans , Information Dissemination/methods , Life Cycle Stages , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Respiratory Mucosa/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL