Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Dig Liver Dis ; 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2231205

ABSTRACT

BACKGROUND AND AIMS: COVID-19 mRNA vaccines were approved to prevent severe forms of the disease, but their immunogenicity and safety in cirrhosis is poorly known. METHOD: In this prospective single-center study enrolling patients with cirrhosis undergoing COVID-19 vaccination (BNT162b2 and mRNA-1273), we assessed humoral and cellular responses vs healthy controls, the incidence of breakthrough infections and adverse events (AEs). Antibodies against spike- and nucleocapsid-protein (anti-S and anti-N) and Spike-specific T-cells responses were quantified at baseline, 21 days after the first and second doses and during follow-up. RESULTS: 182 cirrhotics (85% SARS-CoV-2-naïve) and 38 controls were enrolled. After 2 doses of vaccine, anti-S titres were significantly lower in cirrhotics vs controls [1,751 (0.4-25,000) U/mL vs 4,523 (259-25,000) U/mL, p=0.012] and in SARS-CoV-2-naïve vs previously infected cirrhotics [999 (0.4-17,329) U/mL vs 7,500 (12.5-25,000) U/mL, (p<0.001)]. T-cell responses in cirrhotics were similar to controls, although with different kinetics. In SARS-CoV-2-naïve cirrhotics, HCC, Child-Pugh B/C and BNT162b2 were independent predictors of low response. Neither unexpected nor severe AEs emerged. During follow-up, 2% turned SARS-CoV-2 positive, all asymptomatic. CONCLUSION: Humoral response to COVID-19 vaccines appeared suboptimal in patients with cirrhosis, particularly in SARS-CoV-2-naïve decompensated cirrhotics, although cellular response appeared preserved, and low breakthrough infections rate was registered.

2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2234090

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations.


Subject(s)
COVID-19 , Patient Acuity , Proteomics , Humans , Chromatography, Liquid , COVID-19/diagnosis , COVID-19/metabolism , Proteomics/methods , SARS-CoV-2/pathogenicity , Tandem Mass Spectrometry
3.
Sci Immunol ; : eadf1421, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2116491

ABSTRACT

Numerous safe and effective COVID-19 vaccines have been developed worldwide that utilize various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S, as compared to vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated solely by RBD-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.

4.
BMC Infect Dis ; 22(1): 844, 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2115642

ABSTRACT

INTRODUCTION: We aimed to assess harms (post-vaccine myocarditis and pericarditis) and benefits (preventing severe disease) of COVID-19 vaccination. METHODS: We conducted a population-based retrospective cohort study. Using the integrated platform of the vaccination campaign of Lombardy Region (Italy), after the exclusion of 24,188 individuals not beneficiaries of the Regional Health Service, 9,184,146 citizens candidates to vaccine at December 27, 2020 were followed until November 30, 2021 (the loss to follow-up rate was 0.5%). From the date of administration of each vaccine dose to day 28 post-administration, three periods that covered exposure to the first, second, and third dose were defined. The benefit-risk profile of vaccines was performed by comparing the number needed to harm (NNH) and number needed to treat (NNT) by sex, age, and vaccine type. RESULTS: Incidence rates of myocarditis were 9.9 and 5.2 per million person-months during the exposure and no-exposure periods, respectively, and the incidence rates of pericarditis were 19.5 and 15.9 per million person-months, respectively. The risk of myocarditis was highest following exposure to the second dose of the Moderna vaccine (adjusted HR: 5.5, 95% CI: 3.7 to 8.1). Exposure to the Moderna vaccine was also associated with an increased risk of pericarditis (adjusted HR 2.2, 1.5 to 3.1). NNT was higher than NNH (9471 vs. 7213) for 16 to 19-year-old men who received the Moderna vaccine, while all other sex, age, and vaccine subgroups had a favourable harm-benefit profile. CONCLUSIONS: Men 16 to 19 years of age has the highest rates of myocarditis within a few days after receiving the Moderna vaccines. The balance between harms and benefits was almost always in favour of vaccination.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Male , Humans , Adolescent , Young Adult , Adult , Myocarditis/epidemiology , Myocarditis/etiology , Cohort Studies , COVID-19 Vaccines/adverse effects , Retrospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination/adverse effects , Pericarditis/epidemiology , Pericarditis/etiology , Italy/epidemiology
5.
Epidemiol Prev ; 46(4): 250-258, 2022.
Article in English | MEDLINE | ID: covidwho-2081229

ABSTRACT

OBJECTIVES: to evaluate immunogenicity and effectiveness of BNT162b2 COVID-19 vaccine in a cohort of healthcare workers (HCWs). DESIGN: cohort study. SETTING AND PARTICIPANTS: in a hospital in Milan (Lombardy Region, Northern Italy) HCWs without ("negative cohort") and with ("positive cohort") history of SARS-CoV-2 infection or elevated serum antibody before the vaccination campaign (27.12.2020) were included. Data collection and follow-up covered the period 27.12.2020-13.05.2022. MAIN OUTCOMES MEASURES: 1. serum anti-spike-1 (anti-S1) antibody levels after vaccination; 2. vaccine effectiveness (VE) against SARS-CoV-2 infections (either symptomatic or not) in the negative cohort. Data on infections were extracted from multiple sources (laboratory, accident reports, questionnaires). Vaccination was treated as a time-dependent variable. Using unvaccinated person-time as reference, hazard ratios (HR) of infections and 95% confidence intervals (95%CI) were calculated with a Cox regression model adjusted for gender, age, and occupation. VE was calculated as (1 - HR)×100. RESULTS: 5,596 HCWs were included, 4,771 in the negative and 825 in the positive cohort. In both cohorts, serum anti-S1 antibodies were high one months after the second dose, halved after six months, and returned to high levels after the third dose. In the negative cohort, 1,401 SARS-CoV-2 infections were identified. VE was 70% (95%CI 54-80; 46 infected) in the first four months after the second dose and later declined to 16% (95%CI 0-43; 97 infected). After the third dose, VE increased to 57% (95%CI 35-71; 61 infected) in the first month but rapidly declined over time, particularly after three months (24% in the fourth month and 1% afterwards). The number of infections avoided by vaccination was estimated to be 643 (95%CI 236-1,237). CONCLUSIONS: in spite of rapidly declining effectiveness, vaccination helped to avoid several hundred infections in the considered hospital.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Cohort Studies , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Italy/epidemiology , SARS-CoV-2 , Health Personnel
6.
Front Immunol ; 13: 930074, 2022.
Article in English | MEDLINE | ID: covidwho-1974661

ABSTRACT

A molecular mimicry between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human proteins supports the possibility that autoimmunity takes place during coronavirus disease 2019 (COVID-19) contributing to tissue damage. For example, anti-phospholipid antibodies (aPL) have been reported in COVID-19 as a result of such mimicry and thought to contribute to the immunothrombosis characteristic of the disease. Consistently, active immunization with the virus spike protein may elicit the production of cross-reactive autoantibodies, including aPL. We prospectively looked at the aPL production in healthcare workers vaccinated with RNA- (BNT162b2, n. 100) or adenovirus-based vaccines (ChAdOx1, n. 50). Anti-cardiolipin, anti-beta2 glycoprotein I, anti-phosphatidylserine/prothrombin immunoglobulin G (IgG), IgA, and IgM before and after vaccination were investigated. Anti-platelet factor 4 immunoglobulins were also investigated as autoantibodies associated with COVID-19 vaccination. Additional organ (anti-thyroid) and non-organ (anti-nuclear) autoantibodies and IgG against human proteome were tested as further post-vaccination autoimmunity markers. The antibodies were tested one or three months after the first injection of ChAdOx1 and BNT162b2, respectively; a 12-month clinical follow-up was also performed. Vaccination occasionally induced low titers of aPL and other autoantibodies but did not affect the titer of pre-existing autoantibodies. No significant reactivities against a microarray of approximately 20,000 human proteins were found in a subgroup of ChAdOx1-vaccinees. Consistently, we did not record any clinical manifestation theoretically associated with an underlying autoimmune disorder. The data obtained after the vaccination (two doses for the RNA-based and one dose for the adenovirus-based vaccines), and the clinical follow-up are not supporting the occurrence of an early autoimmune response in this cohort of healthcare workers.


Subject(s)
COVID-19 , Antibodies, Antiphospholipid , Autoantibodies , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , Immunoglobulin G , RNA , SARS-CoV-2 , Vaccination
7.
Eur J Intern Med ; 102: 63-71, 2022 08.
Article in English | MEDLINE | ID: covidwho-1944883

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) presents an urgent threat to global health. Prediction models that accurately estimate mortality risk in hospitalized patients could assist medical staff in treatment and allocating limited resources. AIMS: To externally validate two promising previously published risk scores that predict in-hospital mortality among hospitalized COVID-19 patients. METHODS: Two prospective cohorts were available; a cohort of 1028 patients admitted to one of nine hospitals in Lombardy, Italy (the Lombardy cohort) and a cohort of 432 patients admitted to a hospital in Leiden, the Netherlands (the Leiden cohort). The endpoint was in-hospital mortality. All patients were adult and tested COVID-19 PCR-positive. Model discrimination and calibration were assessed. RESULTS: The C-statistic of the 4C mortality score was good in the Lombardy cohort (0.85, 95CI: 0.82-0.89) and in the Leiden cohort (0.87, 95CI: 0.80-0.94). Model calibration was acceptable in the Lombardy cohort but poor in the Leiden cohort due to the model systematically overpredicting the mortality risk for all patients. The C-statistic of the CURB-65 score was good in the Lombardy cohort (0.80, 95CI: 0.75-0.85) and in the Leiden cohort (0.82, 95CI: 0.76-0.88). The mortality rate in the CURB-65 development cohort was much lower than the mortality rate in the Lombardy cohort. A similar but less pronounced trend was found for patients in the Leiden cohort. CONCLUSION: Although performances did not differ greatly, the 4C mortality score showed the best performance. However, because of quickly changing circumstances, model recalibration may be necessary before using the 4C mortality score.


Subject(s)
COVID-19 , Adult , Hospital Mortality , Humans , Prognosis , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2
8.
Science ; 377(6608): 890-894, 2022 08 19.
Article in English | MEDLINE | ID: covidwho-1949930

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern comprises several sublineages, with BA.2 and BA.2.12.1 having replaced the previously dominant BA.1 and with BA.4 and BA.5 increasing in prevalence worldwide. We show that the large number of Omicron sublineage spike mutations leads to enhanced angiotensin-converting enzyme 2 (ACE2) binding, reduced fusogenicity, and severe dampening of plasma neutralizing activity elicited by infection or seven clinical vaccines relative to the ancestral virus. Administration of a homologous or heterologous booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1, BA.2, BA.2.12.1, BA.4, and BA.5 across all vaccines evaluated. Our data suggest that although Omicron sublineages evade polyclonal neutralizing antibody responses elicited by primary vaccine series, vaccine boosters may provide sufficient protection against Omicron-induced severe disease.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunization, Secondary , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
9.
Hum Mol Genet ; 31(23): 3945-3966, 2022 11 28.
Article in English | MEDLINE | ID: covidwho-1948292

ABSTRACT

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Genome-Wide Association Study , Haplotypes , Polymorphism, Genetic
10.
Sci Rep ; 12(1): 9622, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1947488

ABSTRACT

This network meta-analysis (NMA) assessed the efficacy of remdesivir in hospitalized patients with COVID-19 requiring supplemental oxygen. Randomized controlled trials of hospitalized patients with COVID-19, where patients were receiving supplemental oxygen at baseline and at least one arm received treatment with remdesivir, were identified. Outcomes included mortality, recovery, and no longer requiring supplemental oxygen. NMAs were performed for low-flow oxygen (LFO2); high-flow oxygen (HFO2), including NIV (non-invasive ventilation); or oxygen at any flow (AnyO2) at early (day 14/15) and late (day 28/29) time points. Six studies were included (N = 5245 patients) in the NMA. Remdesivir lowered early and late mortality among AnyO2 patients (risk ratio (RR) 0.52, 95% credible interval (CrI) 0.34-0.79; RR 0.81, 95%CrI 0.69-0.95) and LFO2 patients (RR 0.21, 95%CrI 0.09-0.46; RR 0.24, 95%CrI 0.11-0.48); no improvement was observed among HFO2 patients. Improved early and late recovery was observed among LFO2 patients (RR 1.22, 95%CrI 1.09-1.38; RR 1.17, 95%CrI 1.09-1.28). Remdesivir also lowered the requirement for oxygen support among all patient subgroups. Among hospitalized patients with COVID-19 requiring supplemental oxygen at baseline, use of remdesivir compared to best supportive care is likely to improve the risk of mortality, recovery and need for oxygen support in AnyO2 and LFO2 patients.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Humans , Oxygen/therapeutic use , Randomized Controlled Trials as Topic , Treatment Outcome
11.
Front Immunol ; 13: 873195, 2022.
Article in English | MEDLINE | ID: covidwho-1911041

ABSTRACT

COVID-19 has proven to be particularly serious and life-threatening for patients presenting with pre-existing pathologies. Patients affected by rheumatic musculoskeletal disease (RMD) are likely to have impaired immune responses against SARS-CoV-2 infection due to their compromised immune system and the prolonged use of disease-modifying anti-rheumatic drugs (DMARDs), which include conventional synthetic (cs) DMARDs or biologic and targeted synthetic (b/ts) DMARDs. To provide an integrated analysis of the immune response following SARS-CoV-2 infection in RMD patients treated with different classes of DMARDs we carried out an immunological analysis of the antibody responses toward SARS-CoV-2 nucleocapsid and RBD proteins and an extensive immunophenotypic analysis of the major immune cell populations. We showed that RMD individuals under most DMARD treatments mount a sustained antibody response to the virus, with neutralizing activity. In addition, they displayed a sizable percentage of effector T and B lymphocytes. Among b-DMARDs, we found that anti-TNFα treatments are more favorable drugs to elicit humoral and cellular immune responses as compared to CTLA4-Ig and anti-IL6R inhibitors. This study provides a whole picture of the humoral and cellular immune responses in RMD patients by reassuring the use of DMARD treatments during COVID-19. The study points to TNF-α inhibitors as those DMARDs permitting elicitation of functional antibodies to SARS-CoV-2 and adaptive effector populations available to counteract possible re-infections.


Subject(s)
Antirheumatic Agents , COVID-19 Drug Treatment , Rheumatic Diseases , Antirheumatic Agents/therapeutic use , Humans , Immunosuppressive Agents/therapeutic use , Rheumatic Diseases/drug therapy , SARS-CoV-2
13.
BMJ Open ; 11(2): e047216, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1096996

ABSTRACT

OBJECTIVES: To assess the seroprevalence of anti-SARS-CoV-2 IgG among health careworkers (HCWs) in our university hospital and verify the risk of acquiring the infection according to work area. DESIGN: Cross-sectional study. SETTING: Monocentric, Italian, third-level university hospital. PARTICIPANTS: All the employees of the hospital on a voluntary base, for a total of 4055 participants among 4572 HCWs (88.7%). PRIMARY AND SECONDARY OUTCOME MEASURES: Number of anti-SARS-CoV-2 positive serology according to working area. Association of anti-SARS-CoV-2 positive serology to selected variables (age, gender, country of origin, body mass index, smoking, symptoms and contact with confirmed cases). RESULTS: From 27 April 2020 to 12 June 2020, 4055 HCWs were tested and 309 (7.6%) had a serological positive test. No relevant difference was found between men and women (8.3% vs 7.3%, p=0.3), whereas a higher prevalence was observed among foreign-born workers (27/186, 14.5%, p<0.001), employees younger than 30 (64/668, 9.6%, p=0.02) or older than 60 years (38/383, 9.9%, p=0.02) and among healthcare assistants (40/320, 12.5%, p=0.06). Working as frontline HCWs was not associated with an increased frequency of positive serology (p=0.42). A positive association was found with presence and number of symptoms (p<0.001). The symptoms most frequently associated with a positive serology were taste and smell alterations (OR 4.62, 95% CI: 2.99 to 7.15) and fever (OR 4.37, 95% CI: 3.11 to 6.13). No symptoms were reported in 84/309 (27.2%) HCWs with positive IgG levels. Declared exposure to a suspected/confirmed case was more frequently associated (p<0.001) with positive serology when the contact was a family member (19/94, 20.2%) than a patient or colleague (78/888, 8.8%). CONCLUSIONS: SARS-CoV-2 infection occurred undetected in a large fraction of HCWs and it was not associated with working in COVID-19 frontline areas. Beyond the hospital setting, exposure within the community represents an additional source of infection for HCWs.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Personnel, Hospital , SARS-CoV-2 , Adult , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/epidemiology , Cross-Sectional Studies , Female , Hospitals, University , Humans , Immunoglobulin G/blood , Italy/epidemiology , Male , Middle Aged , Personnel, Hospital/statistics & numerical data , SARS-CoV-2/immunology , Seroepidemiologic Studies
14.
BMC Infect Dis ; 21(1): 184, 2021 Feb 17.
Article in English | MEDLINE | ID: covidwho-1088583

ABSTRACT

BACKGROUND: Recent studies showed that plasma SARS-CoV-2 RNA seems to be associated with worse COVID-19 outcome. However, whether specific population can be at higher risk of viremia are to date unexplored. METHODS: This cross-sectional proof-of-concept study included 41 SARS-CoV-2-positive adult individuals (six affected by haematological malignancies) hospitalized at two major hospital in Milan, for those demographic, clinical and laboratory data were available. SARS-CoV-2 load was quantified by ddPCR in paired plasma and respiratory samples. To assess significant differences between patients with and patients without viremia, Fisher exact test and Wilcoxon test were used for categorical and continuous variables, respectively. RESULTS: Plasma SARS-CoV-2 RNA was found in 8 patients (19.5%), with a median (IQR) value of 694 (209-1023) copies/mL. Viremic patients were characterized by an higher mortality rate (50.0% vs 9.1%; p = 0.018) respect to patients without viremia. Viremic patients were more frequently affected by haematological malignancies (62.5% vs. 3.0%; p < 0.001), and had higher viral load in respiratory samples (9,404,000 [586,060-10,000,000] vs 1560 [312-25,160] copies/mL; p = 0.002). CONCLUSIONS: Even if based on a small sample population, this proof-of-concept study poses the basis for an early identification of patients at higher risk of SARS-CoV-2 viremia, and therefore likely to develop severe COVID-19, and supports the need of a quantitative viral load determination in blood and respiratory samples of haematologic patients with COVID-19 in order to predict prognosis and consequently to help their further management.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/blood , COVID-19/diagnosis , RNA, Viral/blood , Adult , Aged , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prognosis , Proof of Concept Study , SARS-CoV-2/genetics , Serologic Tests , Viral Load , Viremia/virology
15.
Intern Emerg Med ; 16(5): 1223-1229, 2021 08.
Article in English | MEDLINE | ID: covidwho-1002167

ABSTRACT

We conducted an observational cohort study in adult patients consecutively admitted for the respiratory illness Covid-19 to our hub hospital from March 9 to April 7, 2020. The high observed rate of venous thromboembolism prompted us to increase the prophylactic doses of enoxaparin from 40 mg daily up to 1 mg/kg twice daily in patients admitted to intensive care units (ICU), 0.7 mg/kg twice daily in high-intensity of care wards and 1 mg/kg daily in low-intensity of care wards. Patients on high enoxaparin doses were compared to those who received prophylaxis with the standard dosage. Efficacy endpoints were mortality, clinical deterioration, and the occurrence of venous thromboembolism, safety endpoint was the occurrence of major bleeding. Of 278 patients with Covid-19, 127 received prophylaxis with high enoxaparin doses and 151 with standard dosage. At 21 days, the incidence rate of death and clinical deterioration were lower in patients on higher doses than in those on the standard dosage (hazard ratio 0.39, 95% confidence interval 0.23-0.62), and the incidence of venous thromboembolism was also lower (hazard ratio 0.52, 95% confidence interval 0.26-1.05). Major bleeding occurred in four of 127 patients (3.1%) on the high enoxaparin dosage. In conclusion, in the cohort of patients with Covid-19 treated with high enoxaparin dosages we observed a 60% reduction of mortality and clinical deterioration and a 50% reduction of venous thromboembolism compared to standard dosage prophylaxis. However, 3% of patients on high enoxaparin dosages had non-fatal major bleeding.


Subject(s)
COVID-19 Drug Treatment , Heparin, Low-Molecular-Weight/administration & dosage , Hospitalization/statistics & numerical data , Pre-Exposure Prophylaxis/classification , Aged , Body Mass Index , COVID-19/mortality , Cohort Studies , Enoxaparin/administration & dosage , Enoxaparin/classification , Female , Heparin, Low-Molecular-Weight/classification , Humans , Male , Middle Aged , Pre-Exposure Prophylaxis/methods , Pre-Exposure Prophylaxis/statistics & numerical data , Venous Thromboembolism/prevention & control
16.
Front Immunol ; 11: 560330, 2020.
Article in English | MEDLINE | ID: covidwho-1000077

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 is a recently discovered pathogen responsible of coronavirus disease 2019 (COVID-19). The immunological changes associated with this infection are largely unknown. Methods: We evaluated the peripheral blood mononuclear cells profile of 63 patients with COVID-19 at diagnosis. We also assessed the presence of association with inflammatory biomarkers and the 28-day mortality. Results: Lymphocytopenia was present in 51 of 63 (80.9%) patients, with a median value of 720 lymphocytes/µl (IQR 520-1,135). This reduction was mirrored also on CD8+ (128 cells/µl, IQR 55-215), natural killer (67 cells/µl, IQR 35-158) and natural killer T (31 cells/µl, IQR 11-78) cells. Monocytes were preserved in total number but displayed among them a subpopulation with a higher forward and side scatter properties, composed mainly of cells with a reduced expression of both CD14 and HLA-DR. Patients who died in the 28 days from admission (N=10, 15.9%), when compared to those who did not, displayed lower mean values of CD3+ (337.4 cells/µl vs 585.9 cells/µl; p=0.028) and CD4+ cells (232.2 cells/µl vs 381.1 cells/µl; p=0.042) and an higher percentage of CD8+/CD38+/HLA-DR+ lymphocytes (13.5% vs 7.6%; p=0.026). Discussion: The early phases of COVID-19 are characterized by lymphocytopenia, predominance of Th2-like lymphocytes and monocytes with altered immune profile, which include atypical mononuclear cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/pathology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Natural Killer T-Cells/immunology , Aged , CD4 Lymphocyte Count , Cytokines/blood , Female , Humans , Lymphocyte Activation , Lymphopenia/pathology , Male , Middle Aged , SARS-CoV-2/immunology
17.
Intern Emerg Med ; 16(5): 1173-1181, 2021 08.
Article in English | MEDLINE | ID: covidwho-935323

ABSTRACT

To describe radiographic key patterns on Chest X-ray (CXR) in patients with SARS-CoV-2 infection, assessing the prevalence of radiographic signs of interstitial pneumonia. To evaluate pattern variation between a baseline and a follow-up CXR. 1117 patients tested positive for SARS-CoV-2 infection were retrospectively enrolled from four centers in Lombardy region. All patients underwent a CXR at presentation. Follow-up CXR was performed when clinically indicated. Two radiologists in each center reviewed images and classified them as suggestive or not for interstitial pneumonia, recording the presence of ground-glass opacity (GGO), reticular pattern or consolidation and their distribution. Pearson's χ2 test for categorical variables and McNemar test (χ2 for paired data) were performed. Patients mean age 63.3 years, 767 were males (65.5%). The main result is the large proportion of positive CXR in COVID-19 patients. Baseline CXR was positive in 940 patients (80.3%), with significant differences in age and sex distribution between patients with positive and negative CXR. 382 patients underwent a follow-up CXR. The most frequent pattern on baseline CXR was the GGO (66.1%), on follow-up was consolidation (53.4%). The most common distributions were peripheral and middle-lower lung zone. We described key-patterns and their distribution on CXR in a large cohort of COVID-19 patients: GGO was the most frequent finding on baseline CXR, while we found an increase in the proportion of lung consolidation on follow-up CXR. CXR proved to be a reliable tool in our cohort obtaining positive results in 80.3% of the baseline cases.


Subject(s)
COVID-19/diagnostic imaging , Radiography, Thoracic/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Cohort Studies , Female , Humans , Italy/epidemiology , Male , Middle Aged , Radiography, Thoracic/statistics & numerical data , Real-Time Polymerase Chain Reaction/methods
18.
J Autoimmun ; 116: 102560, 2021 01.
Article in English | MEDLINE | ID: covidwho-899086

ABSTRACT

BACKGROUND: Animal models and few clinical reports suggest the involvement of the complement system in the onset of severe manifestations of coronavirus disease-2019 (COVID-19). However, complement contribution to endotheliopathy and hypercoagulability has not been elucidated yet. OBJECTIVE: To evaluate the association among complement activation, endothelial damage and disease severity or activity in COVID-19 patients. METHODS: In this single-centre cohort study, 148 patients with COVID-19 of different severity were evaluated upon hospital admission and 30 days later. Markers of complement activation (SC5b-9 and C5a) and endothelial perturbation (von Willebrand factor [vWF], tissue-type plasminogen activator [t-PA], plasminogen activator inhibitor-1 [PAI-1], soluble thrombomodulin [sTM], and soluble endothelial selectin [sE-selectin]) were measured in plasma. RESULTS: The patients had high plasma levels of SC5b-9 and C5a (p = 0.0001 for both) and vWF, t-PA and PAI-1 (p = 0.0001 for all). Their SC5b-9 levels correlated with those of vWF (r = 0.517, p = 0.0001) and paralleled disease severity (severe vs mild p = 0.0001, severe vs moderate p = 0.026 and moderate vs mild p = 0.001). The levels of sE-selectin were significantly increased only in the patients with severe disease. After 30 days, plasma SC5b-9, C5a and vWF levels had significantly decreased (p = 0.0001 for all), and 43% of the evaluated patients had normal levels. CONCLUSIONS: Complement activation is boosted during the progression of COVID-19 and dampened during remission, thus indicating its role in the pathophysiology of the disease. The association between complement activation and the biomarkers of endothelial damage suggests that complement may contribute to tissue injury and could be the target of specific therapy.


Subject(s)
Biomarkers/blood , COVID-19/blood , Complement Activation/physiology , Endothelium, Vascular/physiopathology , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL