Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Embase; 2022.
Preprint in English | EMBASE | ID: ppcovidwho-338256

ABSTRACT

Omicron (B.1.1.529) shows extensive escape from vaccine immunity, although vaccination reduces severe disease and death1. Boosting with vaccines incorporating variant spike sequences could possibly broaden immunity2. One approach to choose the variant may be to measure immunity elicited by vaccination combined with variant infection. Here we investigated Omicron neutralization in people infected with the Beta (B.1.351) variant and subsequently vaccinated with Pfizer BNT162b2. We observed that Beta infection alone elicited poor Omicron cross-neutralization, similar to what we previously found3 with BNT162b2 vaccination alone or in combination with ancestral or Delta virus infection. In contrast, Beta infection combined with BNT162b2 vaccination elicited neutralization with substantially lower Omicron escape.

2.
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-327015

ABSTRACT

Omicron has been shown to be highly transmissible and have extensive evasion of neutralizing antibody immunity elicited by vaccination and previous SARS-CoV-2 infection. Omicron infections are rapidly expanding worldwide often in the face of high levels of Delta infections. Here we characterized developing immunity to Omicron and investigated whether neutralizing immunity elicited by Omicron also enhances neutralizing immunity of the Delta variant. We enrolled both previously vaccinated and unvaccinated individuals who were infected with SARS-CoV-2 in the Omicron infection wave in South Africa soon after symptom onset. We then measured their ability to neutralize both Omicron and Delta virus at enrollment versus a median of 14 days after enrollment. Neutralization of Omicron increased 14-fold over this time, showing a developing antibody response to the variant. Importantly, there was an enhancement of Delta virus neutralization, which increased 4.4-fold. The increase in Delta variant neutralization in individuals infected with Omicron may result in decreased ability of Delta to re-infect those individuals. Along with emerging data indicating that Omicron, at this time in the pandemic, is less pathogenic than Delta, such an outcome may have positive implications in terms of decreasing the Covid-19 burden of severe disease.

3.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-296585

ABSTRACT

Characterizing SARS-CoV-2 evolution in specific geographies may help predict the properties of variants coming from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from the ancestral virus in a person with advanced HIV disease. Infection was before the emergence of the Beta variant first identified in South Africa, and the Delta variant. We compared early and late evolved virus to the ancestral, Beta, Alpha, and Delta viruses and tested against convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, whereas late virus was similar to Beta, exhibiting vaccine escape and, despite pre-dating Delta, strong escape of Delta-elicited neutralization. This example is consistent with the notion that variants arising in immune-compromised hosts, including those with advanced HIV disease, may evolve immune escape of vaccines and enhanced escape of Delta immunity, with implications for vaccine breakthrough and reinfections. Highlights: A prolonged ancestral SARS-CoV-2 infection pre-dating the emergence of Beta and Delta resulted in evolution of a Beta-like serological phenotypeSerological phenotype includes strong escape from Delta infection elicited immunity, intermediate escape from ancestral virus immunity, and weak escape from Beta immunityEvolved virus showed substantial but incomplete escape from antibodies elicited by BNT162b2 vaccination. Graphical abstract:

4.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-296584

ABSTRACT

The emergence of the SARS-CoV-2 Omicron variant, first identified in South Africa, may compromise the ability of vaccine and previous infection (1) elicited immunity to protect against new infection. Here we investigated whether Omicron escapes antibody neutralization elicited by the Pfizer BNT162b2 mRNA vaccine in people who were vaccinated only or vaccinated and previously infected. We also investigated whether the virus still requires binding to the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa. We then compared neutralization of this virus relative to an ancestral SARS-CoV-2 strain with the D614G mutation. Neutralization was by blood plasma from South African BNT162b2 vaccinated individuals. We observed that Omicron still required the ACE2 receptor to infect but had extensive escape of Pfizer elicited neutralization. However, 5 out of 6 of the previously infected, Pfizer vaccinated individuals, all of them with high neutralization of D614G virus, showed residual neutralization at levels expected to confer protection from infection and severe disease (2). While vaccine effectiveness against Omicron is still to be determined, these data support the notion that high neutralization capacity elicited by a combination of infection and vaccination, and possibly by boosting, could maintain reasonable effectiveness against Omicron. If neutralization capacity is lower or wanes with time, protection against infection is likely to be low. However, protection against severe disease, requiring lower neutralization levels and involving T cell immunity, would likely be maintained.

SELECTION OF CITATIONS
SEARCH DETAIL