Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
WMJ ; 121(2): 121-126, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1940000


INTRODUCTION: Surveillance of SARS-CoV-2 among university employees is an important part of mitigation strategies to prevent asymptomatic transmission and ensure a safe learning and work environment. Here, we assess the feasibility and performance of a program that relies on monitored self-collected nasal swabs to detect SARS-CoV-2 among asymptomatic faculty and staff. METHODS: We recruited 1,030 faculty and staff via rolling enrollment who completed the required University of Wisconsin-Madison employee COVID-19 training and reported working on campus. Asymptomatic participants visited a designated location during a specified timeframe each week where they self-collected nasal swabs supervised by study staff. Specimens were stored in a cooler between 2 °C and 8 °C, then transported to the Wisconsin Veterinary Diagnostic Laboratory for polymerase chain reaction testing. Symptomatic participants or participants with a known exposure were advised to test elsewhere and follow quarantine guidelines from the Centers for Disease Control and Prevention. RESULTS: Over the course of 31 weeks, 1,030 participants self-collected 17,323 monitored nasal swabs resulting in high participation (90%). SARS-CoV-2 was detected in 16 specimens. Eight specimens were inconclusive but were treated as positive results because of the implied detection of 1 or more SARS-CoV-2 genes. There were no invalid tests. Weekly SARS-CoV-2 incidence among participants ranged from 0 to 1.54% (x̄ = 0.20%). The SARS-CoV-2 incidence among participants was similar to estimated incidence in the greater university employee population. CONCLUSION: Weekly SARS-CoV-2 surveillance of asymptomatic faculty and staff on campus allowed for estimation of weekly SARS-CoV-2 incidence among on-campus employees. This surveillance protocol presents a low-cost, effective, and scalable option to identify asymptomatic cases of SARS-CoV-2 among university employees.

COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Faculty , Humans , SARS-CoV-2/genetics , United States , Universities , Wisconsin/epidemiology
Clin Infect Dis ; 2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-1901144


BACKGROUND: Concurrent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and another respiratory virus in individuals can document contemporaneous circulation. We used an ongoing, community-based study of school-aged children and their households to evaluate SARS-CoV-2 co-detections with other respiratory viruses in a non-medically attended population over a two-year period. METHODS: Household enrollment was predicated on an acute respiratory illness in a child residing in that household who was also a kindergarten through 12th grade student in the participating school district. Demographic, symptom and household composition data, and self-collected nasal specimens were obtained on the recruitment day, and 7 and 14 days later, from the index child and all other household members. All specimens were tested for SARS-CoV-2/influenza A/B by RT-PCR. Day 0 specimens from the index children were simultaneously tested for 17 viruses using a commercial respiratory pathogen panel (RPP). To assess viral co-detections involving SARS-CoV-2, all household specimens were tested via RPP if the index child's Day 0 specimen tested positive to any of the 17 viral targets in RPP and any household member tested positive for SARS-CoV-2. RESULTS: Of 2,109 participants (497 index children in 497 households with 1,612 additional household members), two (0.1%) were positive for both SARS-CoV-2 and influenza A; an additional 11 (0.5%) were positive for SARS-CoV-2 and another RPP-covered respiratory virus. Co-detections predominantly affected school-aged children (12 out of 13 total) and were noted in 11 of 497 households. CONCLUSIONS: SARS-CoV-2 co-detections with other respiratory viruses were uncommon and predominated in school-aged children.

PLoS One ; 17(4): e0267111, 2022.
Article in English | MEDLINE | ID: covidwho-1808570


BACKGROUND: Schools are primary venues of influenza amplification with secondary spread to communities. We assessed K-12 student absenteeism monitoring as a means for early detection of influenza activity in the community. MATERIALS AND METHODS: Between September 2014 and March 2020, we conducted a prospective observational study of all-cause (a-TOT), illness-associated (a-I), and influenza-like illness-associated (a-ILI) absenteeism within the Oregon School District (OSD), Dane County, Wisconsin. Absenteeism was reported through the electronic student information system. Students were visited at home where pharyngeal specimens were collected for influenza RT-PCR testing. Surveillance of medically-attended laboratory-confirmed influenza (MAI) occurred in five primary care clinics in and adjoining the OSD. Poisson general additive log linear regression models of daily counts of absenteeism and MAI were compared using correlation analysis. FINDINGS: Influenza was detected in 723 of 2,378 visited students, and in 1,327 of 4,903 MAI patients. Over six influenza seasons, a-ILI was significantly correlated with MAI in the community (r = 0.57; 95% CI: 0.53-0.63) with a one-day lead time and a-I was significantly correlated with MAI in the community (r = 0.49; 0.44-0.54) with a 10-day lead time, while a-TOT performed poorly (r = 0.27; 0.21-0.33), following MAI by six days. DISCUSSION: Surveillance using cause-specific absenteeism was feasible and performed well over a study period marked by diverse presentations of seasonal influenza. Monitoring a-I and a-ILI can provide early warning of seasonal influenza in time for community mitigation efforts.

Absenteeism , Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Schools , Students , Wisconsin/epidemiology