Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Graefes Arch Clin Exp Ophthalmol ; 2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1588798

ABSTRACT

PURPOSE: To detect SARS-CoV-2 RNA in post-mortem human eyes. Ocular symptoms are common in patients with COVID-19. In some cases, they can occur before the onset of respiratory and other symptoms. Accordingly, SARS-CoV-2 RNA has been detected in conjunctival samples and tear film of patients suffering from COVID-19. However, the detection and clinical relevance of intravitreal SARS-CoV-2 RNA still remain unclear due to so far contradictory reports in the literature. METHODS: In our study 20 patients with confirmed diagnosis of COVID-19 were evaluated post-mortem to assess the conjunctival and intraocular presence of SARS-CoV-2 RNA using sterile pulmonary and conjunctival swabs as well as intravitreal biopsies (IVB) via needle puncture. SARS-CoV-2 PCR and whole genome sequencing from the samples of the deceased patients were performed. Medical history and comorbidities of all subjects were recorded and analyzed for correlations with viral data. RESULTS: SARS-CoV-2 RNA was detected in 10 conjunctival (50%) and 6 vitreal (30%) samples. SARS-CoV-2 whole genome sequencing showed the distribution of cases largely reflecting the frequency of circulating lineages in the Munich area at the time of examination with no preponderance of specific variants. Especially there was no association between the presence of SARS-CoV-2 RNA in IVBs and infection with the variant of concern (VOC) alpha. Viral load in bronchial samples correlated positively with load in conjunctiva but not the vitreous. CONCLUSION: SARS-CoV-2 RNA can be detected post mortem in conjunctival tissues and IVBs. This is relevant to the planning of ophthalmologic surgical procedures in COVID-19 patients, such as pars plana vitrectomy or corneal transplantation. Furthermore, not only during surgery but also in an outpatient setting it is important to emphasize the need for personal protection in order to avoid infection and spreading of SARS-CoV-2. Prospective studies are needed, especially to determine the clinical relevance of conjunctival and intravitreal SARS-CoV-2 detection concerning intraocular affection in active COVID-19 state and in post-COVID syndrome.

2.
Preprint | EuropePMC | ID: ppcovidwho-296869

ABSTRACT

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human cells. To date, several "Variants of Concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the four SARS-CoV-2 VOCs (Alpha, Beta, Gamma and Delta) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all four VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had little effect, while knock-down of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than four orders of magnitude. In addition, an antibody directed against the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominating Delta variant.

3.
Euro Surveill ; 26(43)2021 10.
Article in English | MEDLINE | ID: covidwho-1547185

ABSTRACT

BackgroundIn the SARS-CoV-2 pandemic, viral genomes are available at unprecedented speed, but spatio-temporal bias in genome sequence sampling precludes phylogeographical inference without additional contextual data.AimWe applied genomic epidemiology to trace SARS-CoV-2 spread on an international, national and local level, to illustrate how transmission chains can be resolved to the level of a single event and single person using integrated sequence data and spatio-temporal metadata.MethodsWe investigated 289 COVID-19 cases at a university hospital in Munich, Germany, between 29 February and 27 May 2020. Using the ARTIC protocol, we obtained near full-length viral genomes from 174 SARS-CoV-2-positive respiratory samples. Phylogenetic analyses using the Auspice software were employed in combination with anamnestic reporting of travel history, interpersonal interactions and perceived high-risk exposures among patients and healthcare workers to characterise cluster outbreaks and establish likely scenarios and timelines of transmission.ResultsWe identified multiple independent introductions in the Munich Metropolitan Region during the first weeks of the first pandemic wave, mainly by travellers returning from popular skiing areas in the Alps. In these early weeks, the rate of presumable hospital-acquired infections among patients and in particular healthcare workers was high (9.6% and 54%, respectively) and we illustrated how transmission chains can be dissected at high resolution combining virus sequences and spatio-temporal networks of human interactions.ConclusionsEarly spread of SARS-CoV-2 in Europe was catalysed by superspreading events and regional hotspots during the winter holiday season. Genomic epidemiology can be employed to trace viral spread and inform effective containment strategies.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Genome, Viral , Genomics , Germany/epidemiology , Hospitals , Humans , Phylogeny , SARS-CoV-2
4.
Preprint in English | EuropePMC | ID: ppcovidwho-293045

ABSTRACT

Interferons are a major part of the anti-viral innate defense system. Successful pathogens, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), need to overcome these defenses to establish an infection. Early induction of interferons (IFNs) protects against severe coronavirus disease 2019 (COVID-19). In line with this, SARS-CoV-2 is inhibited by IFNs in vitro, and IFN-based therapies against COVID-19 are investigated in clinical trials. However, SARS-CoV-2 continues to adapt to the human population resulting in the emergence of variants characterized by increased transmission fitness and/or decreased sensitivity to preventive or therapeutic measures. It has been suggested that the efficient spread of these so-called "Variants of Concern" (VOCs) may also involve reduced sensitivity to IFNs. Here, we examined whether the four current VOCs (Alpha, Beta, Gamma and Delta) differ in replication efficiency or IFN sensitivity from an early isolate of SARS-CoV-2. All viruses replicated in a human lung cell line and in iPSC-derived alveolar type II cells (iAT2). The Delta variant showed accelerated replication kinetics and higher infectious virus production compared to the early 2020 isolate. Replication of all SARS-CoV-2 VOCs was reduced in the presence of exogenous type I, II and III IFNs. On average, the Alpha variant was the least susceptible to IFNs and the Alpha, Beta and Gamma variants show increased resistance against type III IFN. Although the Delta variant has outcompeted all other variants in humans it remained as sensitive to IFNs as an early 2020 SARS-CoV-2 isolate. This suggests that increased replication fitness rather than IFN resistance may be a reason for its dominance. Our results may help to understand changes in innate immune susceptibility of VOCs, and inform clinical trials exploring IFN-based COVID-19 therapies.

5.
Clin Infect Dis ; 73(9): e3055-e3065, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501051

ABSTRACT

BACKGROUND: High infection rates among healthcare personnel in an uncontained pandemic can paralyze health systems due to staff shortages. Risk constellations and rates of seroconversion for healthcare workers (HCWs) during the first wave of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are still largely unclear. METHODS: Healthcare personnel (n = 300) on different organizational units in the LMU Munich University Hospital were included and followed in this prospective longitudinal study from 24 March until 7 July 2020. Participants were monitored in intervals of 2 to 6 weeks using different antibody assays for serological testing and questionnaires to evaluate risk contacts. In a subgroup of infected participants, we obtained nasopharyngeal swabs to perform whole-genome sequencing for outbreak characterization. RESULTS: HCWs involved in patient care on dedicated coronavirus disease 2019 (COVID-19) wards or on regular non-COVID-19 wards showed a higher rate of SARS-CoV-2 seroconversion than staff in the emergency department and non-frontline personnel. The landscape of risk contacts in these units was dynamic, with a decrease in unprotected risk contacts in the emergency department and an increase on non-COVID-19 wards. Both intensity and number of risk contacts were associated with higher rates of seroconversion. On regular wards, staff infections tended to occur in clusters, while infections on COVID-19 wards were less frequent and apparently independent of each other. CONCLUSIONS: Risk of SARS-CoV-2 infection for frontline HCWs was increased during the first pandemic wave in southern Germany. Stringent measures for infection control are essential to protect all patient-facing staff during the ongoing pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany/epidemiology , Health Personnel , Hospitals, University , Humans , Longitudinal Studies , Pandemics , Prospective Studies
6.
Med Microbiol Immunol ; 210(5-6): 263-275, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1366361

ABSTRACT

A versatile portfolio of diagnostic tests is essential for the containment of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Besides nucleic acid-based test systems and point-of-care (POCT) antigen (Ag) tests, quantitative, laboratory-based nucleocapsid Ag tests for SARS-CoV-2 have recently been launched. Here, we evaluated four commercial Ag tests on automated platforms and one POCT to detect SARS-CoV-2. We evaluated PCR-positive (n = 107) and PCR-negative (n = 303) respiratory swabs from asymptomatic and symptomatic patients at the end of the second pandemic wave in Germany (February-March 2021) as well as clinical isolates EU1 (B.1.117), variant of concern (VOC) Alpha (B.1.1.7) or Beta (B.1.351), which had been expanded in a biosafety level 3 laboratory. The specificities of automated SARS-CoV-2 Ag tests ranged between 97.0 and 99.7% (Lumipulse G SARS-CoV-2 Ag (Fujirebio): 97.03%, Elecsys SARS-CoV-2 Ag (Roche Diagnostics): 97.69%; LIAISON® SARS-CoV-2 Ag (Diasorin) and SARS-CoV-2 Ag ELISA (Euroimmun): 99.67%). In this study cohort of hospitalized patients, the clinical sensitivities of tests were low, ranging from 17.76 to 52.34%, and analytical sensitivities ranged from 420,000 to 25,000,000 Geq/ml. In comparison, the detection limit of the Roche Rapid Ag Test (RAT) was 9,300,000 Geq/ml, detecting 23.58% of respiratory samples. Receiver-operating-characteristics (ROCs) and Youden's index analyses were performed to further characterize the assays' overall performance and determine optimal assay cutoffs for sensitivity and specificity. VOCs carrying up to four amino acid mutations in nucleocapsid were detected by all five assays with characteristics comparable to non-VOCs. In summary, automated, quantitative SARS-CoV-2 Ag tests show variable performance and are not necessarily superior to a standard POCT. The efficacy of any alternative testing strategies to complement nucleic acid-based assays must be carefully evaluated by independent laboratories prior to widespread implementation.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/virology , SARS-CoV-2/isolation & purification , Antigens, Viral/immunology , Automation/economics , Automation/methods , COVID-19/diagnosis , COVID-19 Serological Testing/economics , Cohort Studies , False Negative Reactions , Germany , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity
7.
Sci Total Environ ; 797: 149031, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1322345

ABSTRACT

Wastewater-based epidemiology (WBE) is a tool now increasingly proposed to monitor the SARS-CoV-2 burden in populations without the need for individual mass testing. It is especially interesting in metropolitan areas where spread can be very fast, and proper sewage systems are available for sampling with short flow times and thus little decay of the virus. We started in March 2020 to set up a once-a-week qualified spot sampling protocol in six different locations in Munich carefully chosen to contain primarily wastewater of permanent residential areas, rather than industry or hospitals. We used RT-PCR and sequencing to track the spread of SARS-CoV-2 in the Munich population with temporo-spatial resolution. The study became fully operational in mid-April 2020 and has been tracking SARS-CoV-2 RNA load weekly for one year. Sequencing of the isolated viral RNA was performed to obtain information about the presence and abundance of variants of concern in the Munich area over time. We demonstrate that the evolution of SARS-CoV-2 RNA loads (between <7.5 and 3874/ml) in these different areas within Munich correlates well with official seven day incidence notification data (between 0.0 and 327 per 100,000) obtained from the authorities within the respective region. Wastewater viral loads predicted the dynamic of SARS-CoV-2 local incidence about 3 weeks in advance of data based on respiratory swab analyses. Aligning with multiple different point-mutations characteristic for certain variants of concern, we could demonstrate the gradual increase of variant of concern B.1.1.7 in the Munich population beginning in January 2021, weeks before it became apparent in sequencing results of swabs samples taken from patients living in Munich. Overall, the study highlights the potential of WBE to monitor the SARS-CoV-2 pandemic, including the introduction of variants of concern in a local population.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Sewage , Waste Water
8.
Euro Surveill ; 25(24)2020 06.
Article in English | MEDLINE | ID: covidwho-605372

ABSTRACT

Containment strategies and clinical management of coronavirus disease (COVID-19) patients during the current pandemic depend on reliable diagnostic PCR assays for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we compare 11 different RT-PCR test systems used in seven diagnostic laboratories in Germany in March 2020. While most assays performed well, we identified detection problems in a commonly used assay that may have resulted in false-negative test results during the first weeks of the pandemic.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Diagnostic Equipment , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/instrumentation , Feces/virology , Germany , Humans , Laboratories , Multiplex Polymerase Chain Reaction/instrumentation , Multiplex Polymerase Chain Reaction/methods , Pandemics , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...