Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Intensive Care Med ; 48(5): 580-589, 2022 05.
Article in English | MEDLINE | ID: covidwho-1797659

ABSTRACT

PURPOSE: We assessed long-term outcomes of dexamethasone 12 mg versus 6 mg given daily for up to 10 days in patients with coronavirus disease 2019 (COVID-19) and severe hypoxaemia. METHODS: We assessed 180-day mortality and health-related quality of life (HRQoL) using EuroQoL (EQ)-5D-5L index values and EQ visual analogue scale (VAS) in the international, stratified, blinded COVID STEROID 2 trial, which randomised 1000 adults with confirmed COVID-19 receiving at least 10 L/min of oxygen or mechanical ventilation in 26 hospitals in Europe and India. In the HRQoL analyses, higher values indicated better outcomes, and deceased patients were given a score of zero. RESULTS: We obtained vital status at 180 days for 963 of 982 patients (98.1%) in the intention-to-treat population, EQ-5D-5L index value data for 922 (93.9%) and EQ VAS data for 924 (94.1%). At 180 days, 164 of 486 patients (33.7%) had died in the 12 mg group versus 184 of 477 (38.6%) in the 6 mg group [adjusted risk difference - 4.3%; 99% confidence interval (CI) - 11.7-3.0; relative risk 0.89; 0.72-1.09; P = 0.13]. The adjusted mean differences between the 12 mg and the 6 mg groups in EQ-5D-5L index values were 0.06 (99% CI - 0.01 to 0.12; P = 0.10) and in EQ VAS scores 4 (- 3 to 10; P = 0.22). CONCLUSION: Among patients with COVID-19 and severe hypoxaemia, dexamethasone 12 mg compared with 6 mg did not result in statistically significant improvements in mortality or HRQoL at 180 days, but the results were most compatible with benefit from the higher dose.


Subject(s)
COVID-19 , Dexamethasone , Hypoxia , Adult , COVID-19/complications , COVID-19/drug therapy , Dexamethasone/administration & dosage , Dose-Response Relationship, Drug , Humans , Hypoxia/complications , Hypoxia/drug therapy , Patient Acuity , Quality of Life , Surveys and Questionnaires , Treatment Outcome
2.
Intensive Care Med ; 48(3): 372-373, 2022 03.
Article in English | MEDLINE | ID: covidwho-1718653
5.
Intensive Care Med ; 48(1): 45-55, 2022 01.
Article in English | MEDLINE | ID: covidwho-1605102

ABSTRACT

PURPOSE: We compared dexamethasone 12 versus 6 mg daily for up to 10 days in patients with coronavirus disease 2019 (COVID-19) and severe hypoxaemia in the international, randomised, blinded COVID STEROID 2 trial. In the primary, conventional analyses, the predefined statistical significance thresholds were not reached. We conducted a pre-planned Bayesian analysis to facilitate probabilistic interpretation. METHODS: We analysed outcome data within 90 days in the intention-to-treat population (data available in 967 to 982 patients) using Bayesian models with various sensitivity analyses. Results are presented as median posterior probabilities with 95% credible intervals (CrIs) and probabilities of different effect sizes with 12 mg dexamethasone. RESULTS: The adjusted mean difference on days alive without life support at day 28 (primary outcome) was 1.3 days (95% CrI -0.3 to 2.9; 94.2% probability of benefit). Adjusted relative risks and probabilities of benefit on serious adverse reactions was 0.85 (0.63 to 1.16; 84.1%) and on mortality 0.87 (0.73 to 1.03; 94.8%) at day 28 and 0.88 (0.75 to 1.02; 95.1%) at day 90. Probabilities of benefit on days alive without life support and days alive out of hospital at day 90 were 85 and 95.7%, respectively. Results were largely consistent across sensitivity analyses, with relatively low probabilities of clinically important harm with 12 mg on all outcomes in all analyses. CONCLUSION: We found high probabilities of benefit and low probabilities of clinically important harm with dexamethasone 12 mg versus 6 mg daily in patients with COVID-19 and severe hypoxaemia on all outcomes up to 90 days.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/drug therapy , Dexamethasone , Humans , Hypoxia , SARS-CoV-2 , Steroids
6.
Acta Anaesthesiol Scand ; 66(3): 408-414, 2022 03.
Article in English | MEDLINE | ID: covidwho-1583710

ABSTRACT

BACKGROUND: Respiratory failure is the main cause of mortality and morbidity among ICU patients with coronavirus disease 2019 (COVID-19). In these patients, supplemental oxygen therapy is essential, but there is limited evidence the optimal target. To address this, the ongoing handling oxygenation targets in COVID-19 (HOT-COVID) trial was initiated to investigate the effect of a lower oxygenation target (partial pressure of arterial oxygen (PaO2 ) of 8 kPa) versus a higher oxygenation target (PaO2 of 12 kPa) in the ICU on clinical outcome in patients with COVID-19 and hypoxaemia. METHODS: The HOT-COVID is planned to enrol 780 patients. This paper presents the protocol and statistical analysis plan for the conduct of a secondary Bayesian analysis of the primary outcome of HOT-COVID being days alive without life-support at 90 days and the secondary outcome 90-day all-cause mortality. Furthermore, both outcomes will be investigated for the presence heterogeneity of treatment effects based on four baseline parameters being sequential organ failure assessment score, PaO2 /fraction of inspired oxygen ratio, highest dose of norepinephrine during the 24 h before randomisation, and plasma concentration of lactate at randomisation. CONCLUSION: The results of this pre-planned secondary Bayesian analysis will complement the primary frequentist analysis of the HOT-COVID trial and may facilitate a more nuanced interpretation of the trial results.


Subject(s)
COVID-19 , Respiratory Insufficiency , Bayes Theorem , Humans , Hypoxia , SARS-CoV-2 , Treatment Outcome
7.
Acta Anaesthesiol Scand ; 66(2): 295-301, 2022 02.
Article in English | MEDLINE | ID: covidwho-1528348

ABSTRACT

BACKGROUND: Mortality is often the primary outcome in randomised clinical trials (RCTs) conducted in critically ill patients. Due to increased awareness on survivors after critical illness and outcomes other than mortality, health-related quality of life (HRQoL) and days alive without life support (DAWOLS) or days alive and out of hospital (DAAOOH) are increasingly being used. DAWOLS and DAAOOH convey more information than mortality, are easier to collect than HRQoL, and are usually assessed at earlier time points, which may be preferable in some situations. However, the associations between DAWOLS-DAAOOH and HRQoL are uncertain. METHODS: We will assess associations between DAWOLS-DAAOOH at day 28 and 90 (independent variables/predictors) and HRQoL assessed using the EuroQol EQ-5D-5L questionnaire (EQ-VAS and EQ-5D-5L index values) at 6 or 12 months (dependent variables) in two RCTs: the COVID STEROID 2 RCT conducted in adult patients with COVID-19 and severe hypoxaemia and the Handling Oxygenation Targets in the Intensive Care Unit (HOT-ICU) RCT conducted in adult intensive care patients with acute hypoxaemic respiratory failure. We will describe associations using best-fitting fractional polynomial transformations separately in each dataset, with the resulting models presented and assessed in both datasets graphically and using measures of fit and prediction adequacy (i.e., internal performance and external validation). We will use multiple imputation if missingness exceeds 5%. DISCUSSION: The outlined study will provide important knowledge on the associations between DAWOLS-DAAOOH and HRQoL in adult critically ill patients, which may help researchers and clinical trialists prioritise and select outcomes in future RCTs conducted in this population.


Subject(s)
COVID-19 , Quality of Life , Adult , Hospitals , Humans , SARS-CoV-2 , Surveys and Questionnaires
8.
JAMA ; 326(18): 1807-1817, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1527380

ABSTRACT

Importance: A daily dose with 6 mg of dexamethasone is recommended for up to 10 days in patients with severe and critical COVID-19, but a higher dose may benefit those with more severe disease. Objective: To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. Design, Setting, and Participants: A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021. Interventions: Patients were randomized 1:1 to 12 mg/d of intravenous dexamethasone (n = 503) or 6 mg/d of intravenous dexamethasone (n = 497) for up to 10 days. Main Outcomes and Measures: The primary outcome was the number of days alive without life support (invasive mechanical ventilation, circulatory support, or kidney replacement therapy) at 28 days and was adjusted for stratification variables. Of the 8 prespecified secondary outcomes, 5 are included in this analysis (the number of days alive without life support at 90 days, the number of days alive out of the hospital at 90 days, mortality at 28 days and at 90 days, and ≥1 serious adverse reactions at 28 days). Results: Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group). The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0-2.6 days]; P = .07). Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]). Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]). Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]). Conclusions and Relevance: Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference. Trial Registration: ClinicalTrials.gov Identifier: NCT04509973 and ctri.nic.in Identifier: CTRI/2020/10/028731.


Subject(s)
COVID-19/drug therapy , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Life Support Care , Aged , COVID-19/complications , COVID-19/mortality , Dexamethasone/adverse effects , Dose-Response Relationship, Drug , Female , Glucocorticoids/adverse effects , Humans , Hypoxia/etiology , Hypoxia/therapy , Male , Middle Aged , Mycoses/etiology , Respiration, Artificial , Shock, Septic/etiology , Single-Blind Method
9.
JAMA ; 326(18): 1807-1817, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1482066

ABSTRACT

Importance: A daily dose with 6 mg of dexamethasone is recommended for up to 10 days in patients with severe and critical COVID-19, but a higher dose may benefit those with more severe disease. Objective: To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. Design, Setting, and Participants: A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021. Interventions: Patients were randomized 1:1 to 12 mg/d of intravenous dexamethasone (n = 503) or 6 mg/d of intravenous dexamethasone (n = 497) for up to 10 days. Main Outcomes and Measures: The primary outcome was the number of days alive without life support (invasive mechanical ventilation, circulatory support, or kidney replacement therapy) at 28 days and was adjusted for stratification variables. Of the 8 prespecified secondary outcomes, 5 are included in this analysis (the number of days alive without life support at 90 days, the number of days alive out of the hospital at 90 days, mortality at 28 days and at 90 days, and ≥1 serious adverse reactions at 28 days). Results: Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group). The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0-2.6 days]; P = .07). Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]). Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]). Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]). Conclusions and Relevance: Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference. Trial Registration: ClinicalTrials.gov Identifier: NCT04509973 and ctri.nic.in Identifier: CTRI/2020/10/028731.


Subject(s)
COVID-19/drug therapy , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Life Support Care , Aged , COVID-19/complications , COVID-19/mortality , Dexamethasone/adverse effects , Dose-Response Relationship, Drug , Female , Glucocorticoids/adverse effects , Humans , Hypoxia/etiology , Hypoxia/therapy , Male , Middle Aged , Mycoses/etiology , Respiration, Artificial , Shock, Septic/etiology , Single-Blind Method
10.
Acta Anaesthesiol Scand ; 65(9): 1345-1350, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1280261

ABSTRACT

BACKGROUND: Superinfection following viral infection is a known complication, which may lead to longer hospitalisation and worse outcome. Empirical antibiotic therapy may prevent bacterial superinfections, but may also lead to overuse, adverse effects and development of resistant pathogens. Knowledge about the incidence of superinfections in intensive care unit (ICU) patients with severe Coronavirus Disease 2019 (COVID-19) is limited. METHODS: We will conduct a nationwide cohort study comparing the incidence of superinfections in patients with severe COVID-19 admitted to the ICU compared with ICU patients with influenza A/B in Denmark. We will include approximately 1000 patients in each group from the time period of 1 October 2014 to 30 April 2019 and from 10 March 2020 to 1 March 2021 for patients with influenza and COVID-19, respectively. The primary outcome is any superinfection within 90 days of admission to the ICU. We will use logistic regression analysis comparing COVID-19 with influenza A/B after adjustment for relevant predefined confounders. Secondarily, we will use unadjusted and adjusted logistic regression analyses to assess six potential risk factors (sex, age, cancer [including haematological], immunosuppression and use of life support on day 1 in the ICU) for superinfections and compare outcomes in patients with COVID-19 with/without superinfections, and present descriptive data regarding the superinfections. CONCLUSION: This study will provide important knowledge about superinfections in ICU patients with severe COVID-19.


Subject(s)
COVID-19 , Influenza, Human , Superinfection , Cohort Studies , Denmark/epidemiology , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Intensive Care Units , SARS-CoV-2 , Superinfection/epidemiology
11.
Acta Anaesthesiol Scand ; 65(10): 1421-1430, 2021 11.
Article in English | MEDLINE | ID: covidwho-1273068

ABSTRACT

BACKGROUND: In the early phase of the pandemic, some guidelines recommended the use of corticosteroids for critically ill patients with COVID-19, whereas others recommended against the use despite lack of firm evidence of either benefit or harm. In the COVID STEROID trial, we aimed to assess the effects of low-dose hydrocortisone on patient-centred outcomes in adults with COVID-19 and severe hypoxia. METHODS: In this multicentre, parallel-group, placebo-controlled, blinded, centrally randomised, stratified clinical trial, we randomly assigned adults with confirmed COVID-19 and severe hypoxia (use of mechanical ventilation or supplementary oxygen with a flow of at least 10 L/min) to either hydrocortisone (200 mg/d) vs a matching placebo for 7 days or until hospital discharge. The primary outcome was the number of days alive without life support at day 28 after randomisation. RESULTS: The trial was terminated early when 30 out of 1000 participants had been enrolled because of external evidence indicating benefit from corticosteroids in severe COVID-19. At day 28, the median number of days alive without life support in the hydrocortisone vs placebo group were 7 vs 10 (adjusted mean difference: -1.1 days, 95% CI -9.5 to 7.3, P = .79); mortality was 6/16 vs 2/14; and the number of serious adverse reactions 1/16 vs 0/14. CONCLUSIONS: In this trial of adults with COVID-19 and severe hypoxia, we were unable to provide precise estimates of the benefits and harms of hydrocortisone as compared with placebo as only 3% of the planned sample size were enrolled. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04348305. European Union Drug Regulation Authorities Clinical Trials (EudraCT) Database: 2020-001395-15.


Subject(s)
COVID-19 , Hydrocortisone , Adult , Humans , Hypoxia , SARS-CoV-2 , Treatment Outcome
12.
Acta Anaesthesiol Scand ; 65(6): 834-845, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1083073

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has resulted in millions of deaths and overburdened healthcare systems worldwide. Systemic low-dose corticosteroids have proven clinical benefit in patients with severe COVID-19. Higher doses of corticosteroids are used in other inflammatory lung diseases and may offer additional clinical benefits in COVID-19. At present, the balance between benefits and harms of higher vs. lower doses of corticosteroids for patients with COVID-19 is unclear. METHODS: The COVID STEROID 2 trial is an investigator-initiated, international, parallel-grouped, blinded, centrally randomised and stratified clinical trial assessing higher (12 mg) vs. lower (6 mg) doses of dexamethasone for adults with COVID-19 and severe hypoxia. We plan to enrol 1,000 patients in Denmark, Sweden, Switzerland and India. The primary outcome is days alive without life support (invasive mechanical ventilation, circulatory support or renal replacement therapy) at day 28. Secondary outcomes include serious adverse reactions at day 28; all-cause mortality at day 28, 90 and 180; days alive without life support at day 90; days alive and out of hospital at day 90; and health-related quality of life at day 180. The primary outcome will be analysed using the Kryger Jensen and Lange test adjusted for stratification variables and reported as adjusted mean differences and median differences. The full statistical analysis plan is outlined in this protocol. DISCUSSION: The COVID STEROID 2 trial will provide evidence on the optimal dosing of systemic corticosteroids for COVID-19 patients with severe hypoxia with important implications for patients, their relatives and society.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , COVID-19/drug therapy , Dexamethasone/administration & dosage , Pandemics , Randomized Controlled Trials as Topic/methods , SARS-CoV-2 , Anti-Inflammatory Agents/adverse effects , COVID-19/complications , Denmark , Dexamethasone/adverse effects , Dose-Response Relationship, Drug , Double-Blind Method , Hospital Mortality , Humans , Hydrocortisone/therapeutic use , Hypoxia/drug therapy , Hypoxia/etiology , India , Life Support Care/statistics & numerical data , Practice Patterns, Physicians'/statistics & numerical data , Quality of Life , Survival Analysis , Sweden , Switzerland
13.
Acta Anaesthesiol Scand ; 65(5): 702-710, 2021 05.
Article in English | MEDLINE | ID: covidwho-1081822

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) can lead to severe hypoxic respiratory failure and death. Corticosteroids decrease mortality in severely or critically ill patients with COVID-19. However, the optimal dose remains unresolved. The ongoing randomised COVID STEROID 2 trial investigates the effects of higher vs lower doses of dexamethasone (12 vs 6 mg intravenously daily for up to 10 days) in 1,000 adult patients with COVID-19 and severe hypoxia. METHODS: This protocol outlines the rationale and statistical methods for a secondary, pre-planned Bayesian analysis of the primary outcome (days alive without life support at day 28) and all secondary outcomes registered up to day 90. We will use hurdle-negative binomial models to estimate the mean number of days alive without life support in each group and present results as mean differences and incidence rate ratios with 95% credibility intervals (CrIs). Additional count outcomes will be analysed similarly and binary outcomes will be analysed using logistic regression models with results presented as probabilities, relative risks and risk differences with 95% CrIs. We will present probabilities of any benefit/harm, clinically important benefit/harm and probabilities of effects smaller than pre-defined clinically minimally important differences for all outcomes analysed. Analyses will be adjusted for stratification variables and conducted using weakly informative priors supplemented by sensitivity analyses using sceptic priors. DISCUSSION: This secondary, pre-planned Bayesian analysis will supplement the primary, conventional analysis and may help clinicians, researchers and policymakers interpret the results of the COVID STEROID 2 trial while avoiding arbitrarily dichotomised interpretations of the results. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04509973; EudraCT: 2020-003363-25.


Subject(s)
COVID-19/drug therapy , Dexamethasone/administration & dosage , Hypoxia/drug therapy , Randomized Controlled Trials as Topic , SARS-CoV-2 , Bayes Theorem , Humans
14.
JAMA ; 324(13): 1330-1341, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-739604

ABSTRACT

Importance: Effective therapies for patients with coronavirus disease 2019 (COVID-19) are needed, and clinical trial data have demonstrated that low-dose dexamethasone reduced mortality in hospitalized patients with COVID-19 who required respiratory support. Objective: To estimate the association between administration of corticosteroids compared with usual care or placebo and 28-day all-cause mortality. Design, Setting, and Participants: Prospective meta-analysis that pooled data from 7 randomized clinical trials that evaluated the efficacy of corticosteroids in 1703 critically ill patients with COVID-19. The trials were conducted in 12 countries from February 26, 2020, to June 9, 2020, and the date of final follow-up was July 6, 2020. Pooled data were aggregated from the individual trials, overall, and in predefined subgroups. Risk of bias was assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I2 statistic. The primary analysis was an inverse variance-weighted fixed-effect meta-analysis of overall mortality, with the association between the intervention and mortality quantified using odds ratios (ORs). Random-effects meta-analyses also were conducted (with the Paule-Mandel estimate of heterogeneity and the Hartung-Knapp adjustment) and an inverse variance-weighted fixed-effect analysis using risk ratios. Exposures: Patients had been randomized to receive systemic dexamethasone, hydrocortisone, or methylprednisolone (678 patients) or to receive usual care or placebo (1025 patients). Main Outcomes and Measures: The primary outcome measure was all-cause mortality at 28 days after randomization. A secondary outcome was investigator-defined serious adverse events. Results: A total of 1703 patients (median age, 60 years [interquartile range, 52-68 years]; 488 [29%] women) were included in the analysis. Risk of bias was assessed as "low" for 6 of the 7 mortality results and as "some concerns" in 1 trial because of the randomization method. Five trials reported mortality at 28 days, 1 trial at 21 days, and 1 trial at 30 days. There were 222 deaths among the 678 patients randomized to corticosteroids and 425 deaths among the 1025 patients randomized to usual care or placebo (summary OR, 0.66 [95% CI, 0.53-0.82]; P < .001 based on a fixed-effect meta-analysis). There was little inconsistency between the trial results (I2 = 15.6%; P = .31 for heterogeneity) and the summary OR was 0.70 (95% CI, 0.48-1.01; P = .053) based on the random-effects meta-analysis. The fixed-effect summary OR for the association with mortality was 0.64 (95% CI, 0.50-0.82; P < .001) for dexamethasone compared with usual care or placebo (3 trials, 1282 patients, and 527 deaths), the OR was 0.69 (95% CI, 0.43-1.12; P = .13) for hydrocortisone (3 trials, 374 patients, and 94 deaths), and the OR was 0.91 (95% CI, 0.29-2.87; P = .87) for methylprednisolone (1 trial, 47 patients, and 26 deaths). Among the 6 trials that reported serious adverse events, 64 events occurred among 354 patients randomized to corticosteroids and 80 events occurred among 342 patients randomized to usual care or placebo. Conclusions and Relevance: In this prospective meta-analysis of clinical trials of critically ill patients with COVID-19, administration of systemic corticosteroids, compared with usual care or placebo, was associated with lower 28-day all-cause mortality.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Coronavirus Infections/drug therapy , Glucocorticoids/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus , COVID-19 , Cause of Death , Coronavirus Infections/mortality , Critical Illness , Dexamethasone/therapeutic use , Humans , Hydrocortisone/therapeutic use , Methylprednisolone/therapeutic use , Pandemics , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic , SARS-CoV-2
15.
Acta Anaesthesiol Scand ; 64(9): 1365-1375, 2020 10.
Article in English | MEDLINE | ID: covidwho-671325

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus-2 has caused a pandemic of coronavirus disease (COVID-19) with many patients developing hypoxic respiratory failure. Corticosteroids reduce the time on mechanical ventilation, length of stay in the intensive care unit and potentially also mortality in similar patient populations. However, corticosteroids have undesirable effects, including longer time to viral clearance. Clinical equipoise on the use of corticosteroids for COVID-19 exists. METHODS: The COVID STEROID trial is an international, randomised, stratified, blinded clinical trial. We will allocate 1000 adult patients with COVID-19 receiving ≥10 L/min of oxygen or on mechanical ventilation to intravenous hydrocortisone 200 mg daily vs placebo (0.9% saline) for 7 days. The primary outcome is days alive without life support (ie mechanical ventilation, circulatory support, and renal replacement therapy) at day 28. Secondary outcomes are serious adverse reactions at day 14; days alive without life support at day 90; days alive and out of hospital at day 90; all-cause mortality at day 28, day 90, and 1 year; and health-related quality of life at 1 year. We will conduct the statistical analyses according to this protocol, including interim analyses for every 250 patients followed for 28 days. The primary outcome will be compared using the Kryger Jensen and Lange test in the intention to treat population and reported as differences in means and medians with 95% confidence intervals. DISCUSSION: The COVID STEROID trial will provide important evidence to guide the use of corticosteroids in COVID-19 and severe hypoxia.


Subject(s)
COVID-19/complications , COVID-19/drug therapy , Hydrocortisone/therapeutic use , Hypoxia/complications , Hypoxia/drug therapy , Research Design , Adult , Anti-Inflammatory Agents/therapeutic use , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL