ABSTRACT
AIM: To compare detection of SARS-CoV-2 from paired nasopharyngeal swabs (NPS) and saliva using molecular methods in common use for testing swabs in New Zealand. METHOD: Samples from individuals testing positive for SARS-CoV-2 in Auckland, Wellington and Dunedin were tested at the local laboratories using methods previously established for these sample types. RESULTS: One hundred and ninety-six paired samples from unique individuals were tested, with 46 (23%) positive from either sample type, of which 43/46 (93%) tested positive from NPS, and 42/46 (91%) from saliva, indicating no significant difference in performance between sample types (p=0.69). The average Δ Ct between saliva and nasopharyngeal swabs overall across the sample set was 0.22 cycles, indicating excellent concordance; however, the difference between NPS and saliva collected from the same individual was quite variable with up to 19 cycles difference between the sample types. CONCLUSION: We found that saliva is an equivalent sample type to nasopharyngeal swab for the detection of SARS-CoV-2 in our laboratories using multiple assay combinations and is suitable for use as a diagnostic and surveillance test for selected groups of individuals.
Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Humans , Nasopharynx , New Zealand , SARS-CoV-2/genetics , Saliva , Specimen Handling/methodsABSTRACT
BACKGROUND: In 2019, Aotearoa New Zealand (NZ) experienced its worst measles outbreak since 1997. Due to declining childhood vaccination rates since the beginning of the SARS-CoV-2 pandemic, NZ is at serious risk of another major measles outbreak. Our laboratory provides diagnostic services to NZ's Southern region. In 2019 the Southern region experienced the greatest number of cases outside of Auckland and Northland, however we did not have a validated measles PCR assay in our laboratory. OBJECTIVES: We sought to develop reverse transcription real-time polymerase chain reaction (RT-PCR) assays for measles on the Hologic Panther Fusion® System by utilising its open access function. STUDY DESIGN: Previously published real-time RT-PCR assays were modified and optimised to detect wild-type measles virus (LDT-Mea), and the vaccine strain of measles virus (LDT-MeaVacA), on the Hologic Panther Fusion® System. The assays were clinically validated. RESULTS: The LDT-Mea assay has a limit of detection (LoD) of 0.1 CCID50, while the LDT-MeaVacA assay is less sensitive with a LoD of 1 CCID50. Using 27 samples, the clinical sensitivity and specificity was 100% for both assays. Other common respiratory viruses were found not to cross-react with either the LDT-Mea or LDT-MeaVacA assays. CONCLUSION: We have successfully adapted and validated for diagnostic use on the Hologic Panther Fusion® System previously published assays to detect wild-type and vaccine strains of the measles virus. The implementation of measles testing on this system will greatly improve the turn-around time for measles testing, and better support the measles public health response, for our region.
Subject(s)
COVID-19 , Measles , Humans , Measles virus/genetics , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Measles/diagnosis , Measles/epidemiology , Sensitivity and Specificity , COVID-19 TestingABSTRACT
The rapid global rise of COVID-19 from late 2019 caught major manufacturers of RT-qPCR reagents by surprise and threw into sharp focus the heavy reliance of molecular diagnostic providers on a handful of reagent suppliers. In addition, lockdown and transport bans, necessarily imposed to contain disease spread, put pressure on global supply lines with freight volumes severely restricted. These issues were acutely felt in New Zealand, an island nation located at the end of most supply lines. This led New Zealand scientists to pose the hypothetical question: in a doomsday scenario where access to COVID-19 RT-qPCR reagents became unavailable, would New Zealand possess the expertise and infrastructure to make its own reagents onshore? In this work we describe a review of New Zealand's COVID-19 test requirements, bring together local experts and resources to make all reagents for the RT-qPCR process, and create a COVID-19 diagnostic assay referred to as HomeBrew (HB) RT-qPCR from onshore synthesized components. This one-step RT-qPCR assay was evaluated using clinical samples and shown to be comparable to a commercial COVID-19 assay. Through this work we show New Zealand has both the expertise and, with sufficient lead time and forward planning, infrastructure capacity to meet reagent supply challenges if they were ever to emerge.
Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Humans , Indicators and Reagents/supply & distribution , SARS-CoV-2ABSTRACT
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has wreaked havoc across the globe for the last two years. More than 300 million cases and over 5 million deaths later, we continue battling the first real pandemic of the 21st century. SARS-CoV-2 spread quickly, reaching most countries within the first half of 2020, and New Zealand was not an exception. Here, we describe the first isolation and characterization of SARS-CoV-2 variants during the initial virus outbreak in New Zealand. Patient-derived nasopharyngeal samples were used to inoculate Vero cells and, three to four days later, a cytopathic effect was observed in seven viral cultures. Viral growth kinetics was characterized using Vero and VeroE6/TMPRSS2 cells. The identity of the viruses was verified by RT-qPCR, Western blot, indirect immunofluorescence assays, and electron microscopy. Whole-genome sequences were analyzed using two different yet complementary deep sequencing platforms (MiSeq/Illumina and Ion PGM™/Ion Torrent™), classifying the viruses as SARS-CoV-2 B.55, B.31, B.1, or B.1.369 based on the Pango Lineage nomenclature. All seven SARS-CoV-2 isolates were susceptible to remdesivir (EC50 values from 0.83 to 2.42 µM) and ß-D-N4-hydroxycytidine (molnupiravir, EC50 values from 0.96 to 1.15 µM) but not to favipiravir (>10 µM). Interestingly, four SARS-CoV-2 isolates, carrying the D614G substitution originally associated with increased transmissibility, were more susceptible (2.4-fold) to a commercial monoclonal antibody targeting the spike glycoprotein than the wild-type viruses. Altogether, this seminal work allowed for early access to SARS-CoV-2 isolates in New Zealand, paving the way for numerous clinical and scientific research projects in the country, including the development and validation of diagnostic assays, antiviral strategies, and a national COVID-19 vaccine development program.
Subject(s)
COVID-19/epidemiology , Genome, Viral , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Animals , Antibodies, Monoclonal/pharmacology , Antiviral Agents , Chlorocebus aethiops , Cohort Studies , Cytopathogenic Effect, Viral , Humans , Middle Aged , New Zealand/epidemiology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Vero Cells , Whole Genome Sequencing , Young AdultABSTRACT
It has been 20 months since we first heard of SARS-CoV-2, the novel coronavirus detected in the Hubei province, China, in December 2019, responsible for the ongoing COVID-19 pandemic. Since then, a myriad of studies aimed at understanding and controlling SARS-CoV-2 have been published at a pace that has outshined the original effort to combat HIV during the beginning of the AIDS epidemic. This massive response started by developing strategies to not only diagnose individual SARS-CoV-2 infections but to monitor the transmission, evolution, and global spread of this new virus. We currently have hundreds of commercial diagnostic tests; however, that was not the case in early 2020, when just a handful of protocols were available, and few whole-genome SARS-CoV-2 sequences had been described. It was mid-January 2020 when several District Health Boards across New Zealand started planning the implementation of diagnostic testing for this emerging virus. Here, we describe our experience implementing a molecular test to detect SARS-CoV-2 infection, adapting the RT-qPCR assay to be used in a random-access platform (Hologic Panther Fusion® System) in a clinical laboratory, and characterizing the first whole-genome SARS-CoV-2 sequences obtained in the South Island, right at the beginning of the SARS-CoV-2 outbreak in New Zealand. We expect that this work will help us and others prepare for the unequivocal risk of similar viral outbreaks in the future.