Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Vaccines (Basel) ; 10(5)2022 May 12.
Article in English | MEDLINE | ID: covidwho-1855848


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a public health crisis over the last two years. Monoclonal antibody (mAb)-based therapeutics against the spike (S) protein have been shown to be effective treatments for SARS-CoV-2 infection, especially the original viral strain. However, the current mAbs produced in mammalian cells are expensive and might be unaffordable for many. Furthermore, the emergence of variants of concern demands the development of strategies to prevent mutant escape from mAb treatment. Using a cocktail of mAbs that bind to complementary neutralizing epitopes is one such strategy. In this study, we use Nicotiana benthamiana plants in an effort to expedite the development of efficacious and affordable antibody cocktails against SARS-CoV-2. We show that two mAbs can be highly expressed in plants and are correctly assembled into IgG molecules. Moreover, they retain target epitope recognition and, more importantly, neutralize multiple SARS-CoV-2 variants. We also show that one plant-made mAb has neutralizing synergy with other mAbs that we developed in hybridomas. This is the first report of a plant-made mAb to be assessed as a potential component of a SARS-CoV-2 neutralizing cocktail. This work may offer a strategy for using plants to quickly develop mAb cocktail-based therapeutics against emerging viral diseases with high efficacy and low costs.

Diagn Microbiol Infect Dis ; 98(3): 115161, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-776481


In a Clinical Laboratory Improvement Amendments laboratory setting, we evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG detection with 4 lateral flow immunoassays [LFIAs; 2 iterations from BTNX Inc. (n = 457) and 1 each from ACON Laboratories (n = 200) and SD BIOSENSOR (n = 155)]. In a cohort of primarily hospitalized, reverse-transcription polymerase chain reaction-confirmed coronavirus disease 2019 cases, sensitivity at ≥14 days from symptom onset was: BTNX kit 1, 95%; BTNX kit 2, 91%; ACON, 95%; and SD, 92%. All assays showed good concordance with the Abbott SARS-CoV-2 IgG assay at ≥14 days from symptom onset: BTNX kit 1, 99%; BTNX kit 2, 94%; ACON, 99%; and SD, 100%. Specificity, measured using specimens collected prior to SARS-CoV-2 circulation in the United States and "cross-reactivity challenge" specimens, was 98% for BTNX kit 1 and ACON and 100% for BTNX kit 2 and SD. These results suggest that LFIAs may provide adequate results for rapid detection of SARS-CoV-2.

Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Immunoassay/methods , Immunoglobulin G/blood , Pneumonia, Viral/diagnosis , COVID-19 , Humans , Pandemics , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity