Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 13: 915338, 2022.
Article in English | MEDLINE | ID: covidwho-2022704

ABSTRACT

Background: Since December 2019, SARS-CoV-2 has been keeping the world in suspense. Rapid tests, molecular diagnosis of acute infections, and vaccination campaigns with vaccines are building blocks of strategic pandemic control worldwide. For laboratory diagnostics, the quantification of the antibody titer of convalescents and vaccinated patients is thus increasingly coming to the fore. Methods: Here we present an evaluation on the comparability of five serological tests on a cohort of 13 patients with mild COVID-19 disease. Also participants who were vaccinated after recovery were included in this study. All common immune methods (ELISA, CLIA, PETIA) and SARS-CoV-2 specific antigens (N-, S1- and RBD-) were specifically tracked and directly compared for up to 455 days. The titer of recovered participants was also set to the degree of symptoms during infection and the occurrence of Long-COVID. In addition, relative comparability of different serological tests, all standardized to WHO, was set in reference to the neutralizing potential of the corresponding participants. Findings: The individual immune responses over 455 days after a mild SARS-CoV-2 infection remain stable, in contrast to vaccinated participants. All sero-tests reveal comparable performance and dynamics during the study and compared well to a surrogate neutralization test. Conclusion: The information presented here will help clinicians in the daily laboratory work in the selection and evaluation of different serological tests offered. The data also will support in respect of a sero-test-based neutralization cutoff.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/complications , Humans , Pandemics , SARS-CoV-2
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2010989

ABSTRACT

Background Since December 2019, SARS-CoV-2 has been keeping the world in suspense. Rapid tests, molecular diagnosis of acute infections, and vaccination campaigns with vaccines are building blocks of strategic pandemic control worldwide. For laboratory diagnostics, the quantification of the antibody titer of convalescents and vaccinated patients is thus increasingly coming to the fore. Methods Here we present an evaluation on the comparability of five serological tests on a cohort of 13 patients with mild COVID-19 disease. Also participants who were vaccinated after recovery were included in this study. All common immune methods (ELISA, CLIA, PETIA) and SARS-CoV-2 specific antigens (N-, S1- and RBD-) were specifically tracked and directly compared for up to 455 days. The titer of recovered participants was also set to the degree of symptoms during infection and the occurrence of Long-COVID. In addition, relative comparability of different serological tests, all standardized to WHO, was set in reference to the neutralizing potential of the corresponding participants. Findings The individual immune responses over 455 days after a mild SARS-CoV-2 infection remain stable, in contrast to vaccinated participants. All sero-tests reveal comparable performance and dynamics during the study and compared well to a surrogate neutralization test. Conclusion The information presented here will help clinicians in the daily laboratory work in the selection and evaluation of different serological tests offered. The data also will support in respect of a sero-test-based neutralization cutoff.

3.
Diagnostics (Basel) ; 11(8)2021 Jul 25.
Article in English | MEDLINE | ID: covidwho-1325618

ABSTRACT

In 2019, a novel coronavirus emerged in Wuhan in the province of Hubei, China. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly spread across the globe, causing the neoteric COVID-19 pandemic. SARS-CoV-2 is commonly transmitted by droplet infection and aerosols when coughing or sneezing, as well as high-risk exposures to infected individuals by face-to-face contact without protective gear. To date, a broad variety of techniques have emerged to assess and quantify the specific antibody response of a patient towards a SARS-CoV-2 infection. Here, we report the first comprehensive comparison of five different assay systems: Enzyme-Linked Immunosorbent Assay (ELISA), Chemiluminescence Immunoassay (CLIA), Electro-Chemiluminescence Immunoassay (ECLIA), and a new Particle-Enhanced Turbidimetric Immunoassay (PETIA) for SARS-CoV-2. Furthermore, we also evaluated the suitability of N-, S1- and RBD-antigens for quantifying the SARS-CoV-2 specific immune response. Linearity and precision, overall sensitivity and specificity of the assays, stability of samples, and cross-reactivity of general viral responses, as well as common coronaviruses, were assessed. Moreover, the reactivity of all tests to seroconversion and different sample matrices was quantified. All five assays showed good overall agreement, with 76% and 87% similarity for negative and positive samples, respectively. In conclusion, all evaluated methods showed a high consistency of results and suitability for the robust quantification of the SARS-CoV-2-derived immune response.

4.
Clin Chem Lab Med ; 59(9): 1507-1515, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1206212

ABSTRACT

With an almost unremittent progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all around the world, there is a compelling need to introduce rapid, reliable, and high-throughput testing to allow appropriate clinical management and/or timely isolation of infected individuals. Although nucleic acid amplification testing (NAAT) remains the gold standard for detecting and theoretically quantifying SARS-CoV-2 mRNA in various specimen types, antigen assays may be considered a suitable alternative, under specific circumstances. Rapid antigen tests are meant to detect viral antigen proteins in biological specimens (e.g. nasal, nasopharyngeal, saliva), to indicate current SARS-CoV-2 infection. The available assay methodology includes rapid chromatographic immunoassays, used at the point-of-care, which carries some advantages and drawbacks compared to more conventional, instrumentation-based, laboratory immunoassays. Therefore, this document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Taskforce on COVID-19 aims to summarize available data on the performance of currently available SARS-CoV-2 antigen rapid detection tests (Ag-RDTs), providing interim guidance on clinical indications and target populations, assay selection, and evaluation, test interpretation and limitations, as well as on pre-analytical considerations. This document is hence mainly aimed to assist laboratory and regulated health professionals in selecting, validating, and implementing regulatory approved Ag-RDTs.


Subject(s)
Antigens, Viral/immunology , COVID-19/diagnosis , Immunoassay/standards , Point-of-Care Testing/standards , Practice Guidelines as Topic/standards , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Asymptomatic Infections/classification , COVID-19/immunology , COVID-19/virology , Humans
5.
Clin Chem Lab Med ; 58(12): 2009-2016, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-835982

ABSTRACT

Routine biochemical and hematological tests have been reported to be useful in the stratification and prognostication of pediatric and adult patients with diagnosed coronavirus disease (COVID-19), correlating with poor outcomes such as the need for mechanical ventilation or intensive care, progression to multisystem organ failure, and/or death. While these tests are already well established in most clinical laboratories, there is still debate regarding their clinical value in the management of COVID-19, particularly in pediatrics, as well as the value of composite clinical risk scores in COVID-19 prognostication. This document by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on COVID-19 provides interim guidance on: (A) clinical indications for testing, (B) recommendations for test selection and interpretation, (C) considerations in test interpretation, and (D) current limitations of biochemical/hematological monitoring of COVID-19 patients. These evidence-based recommendations will provide practical guidance to clinical laboratories worldwide, underscoring the contribution of biochemical and hematological testing to our collective pandemic response.


Subject(s)
Coronavirus Infections/metabolism , Hematologic Tests , International Agencies , Pneumonia, Viral/metabolism , Practice Guidelines as Topic , Adult , Biomarkers/blood , COVID-19 , Cardiovascular Diseases/complications , Child , Coronavirus Infections/blood , Coronavirus Infections/complications , Female , Humans , Male , Multiple Organ Failure/complications , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications
6.
Clin Chem Lab Med ; 58(12): 2001-2008, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-835981

ABSTRACT

Serological testing for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is emerging as an important component of the clinical management of patients with coronavirus disease 2019 (COVID-19) as well as the epidemiological assessment of SARS-CoV-2 exposure worldwide. In addition to molecular testing for the detection of SARS-CoV-2 infection, clinical laboratories have also needed to increase testing capacity to include serological evaluation of patients with suspected or known COVID-19. While regulatory approved serological immunoassays are now widely available from diagnostic manufacturers globally, there is significant debate regarding the clinical utility of these tests, as well as their clinical and analytical performance requirements prior to application. This document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Taskforce on COVID-19 provides interim guidance on: (A) clinical indications and target populations, (B) assay selection, (C) assay evaluation, and (D) test interpretation and limitations for serological testing of antibodies against SARS-CoV-2 infection. These evidence-based recommendations will provide practical guidance to clinical laboratories in the selection, verification, and implementation of serological assays and are of the utmost importance as we expand our pandemic response from initial case tracing and containment to mitigation strategies to minimize resurgence and further morbidity and mortality.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , International Agencies , Practice Guidelines as Topic , Serologic Tests/methods , Antibodies, Viral/immunology , Humans , SARS-CoV-2
7.
Clin Chem Lab Med ; 58(12): 1993-2000, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-835980

ABSTRACT

The diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection globally has relied extensively on molecular testing, contributing vitally to case identification, isolation, contact tracing, and rationalization of infection control measures during the coronavirus disease 2019 (COVID-19) pandemic. Clinical laboratories have thus needed to verify newly developed molecular tests and increase testing capacity at an unprecedented rate. As the COVID-19 pandemic continues to pose a global health threat, laboratories continue to encounter challenges in the selection, verification, and interpretation of these tests. This document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on COVID-19 provides interim guidance on: (A) clinical indications and target populations, (B) assay selection, (C) assay verification, and (D) test interpretation and limitations for molecular testing of SARS-CoV-2 infection. These evidence-based recommendations will provide practical guidance to clinical laboratories worldwide and highlight the continued importance of laboratory medicine in our collective pandemic response.


Subject(s)
Coronavirus Infections/diagnosis , International Agencies , Molecular Diagnostic Techniques , Pneumonia, Viral/diagnosis , Practice Guidelines as Topic , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL