Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Radiology ; : 220069, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1861680

ABSTRACT

Background Post-Covid-19 condition describes symptoms following COVID-19 infection after four weeks. Symptoms are wide-ranging but breathlessness is common. Purpose The purpose of this study was to determine whether the previously described lung abnormalities on Hp-XeMRI in post-hospitalised COVID-19 participants are also present in non-hospitalised participants with Post-Covid-19 condition. Methods In this prospective study, non-hospitalised Post-Covid-19 condition (NHLC) and post-hospitalised COVID-19 (PHC) participants were enrolled from 06/2020 to 08/2021. Participants had chest CT, hyperpolarized pulmonary 129Xenon MRI (Hp-XeMRI), pulmonary function tests, 1-minute sit-to-stand test and breathlessness questionnaires. Control subjects underwent HP-XeMRI only. CT scans were analysed for post COVID interstitial lung disease severity using a previously published scoring system, and Full-scale Airway Network (FAN) modelling. Analysis used group and pair-wise comparisons between participants and controls, and correlations between participant clinical and imaging data. Results A total of 11 NHLC (4:7 Male: Female, 44 ± 11 years, [37-50], (mean ± SD, [95% CI]) and 12 PHC (10:2, Male: Female, 58 ± 10 years, [52-64]) participants were included, with a significant difference in age between groups, p = 0.05. NHLC participants were 287 ± 79, [240-334] and PHC 143 ± 72, [105-190] days from infection, respectively. NHLC and PHC participants had normal or near normal CT scans (0.3/25 ± 0.6, [0-0.63] and 7/25 ± 5, [4-10], respectively). Gas transfer (DLco (%)) was different between NHLC and PHC participants (76 ± 8%, [73-83] vs 86 ± 8%, [80-91] respectively, p = 0.04) but there was no evidence of other differences in lung function. Red Blood Cell:Tissue Plasma (RBC:TP) mean was different between volunteers vs PHC (0.45 ± 0.07, [0.43-0.47] vs (0.31 ± 0.10, [0.24-0.37], respectively, p = 0.02) and volunteers vs NHLC (0.37 ± 0.10, [0.31-0.44], p = 0.03) participants, but not between NHLC and PHC participants (p = 0.26). FAN results did not correlate with DLco or Hp- XeMRI. Conclusion NHLC and PHC subjects showed Hp-XeMRI RBC:TP abnormalities, with NHLC participants demonstrating lower DLco than PHC participants despite having normal CT scans. See also the editorial by Parraga and Matheson.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-333064

ABSTRACT

Introduction Microvascular abnormalities and impaired 129 Xe gas transfer have been observed in patients with COVID-19. The progression of pathophysiological pulmonary changes during the post-acute period in these patients remains unclear. Methods Patients who were hospitalised due to COVID-19 pneumonia underwent a pulmonary 1 H and 129 Xe MRI protocol at 6, 12, 25 and 50 weeks after hospital admission. The imaging protocol included: ultra-short echo time, dynamic contrast enhanced lung perfusion, 129 Xe lung ventilation, 129 Xe diffusion weighted and 129 Xe 3D spectroscopic imaging of gas exchange. Results 9 patients were recruited and underwent MRI at 6 (n=9), 12 (n=9), 25 (n=6) and 50 (n=3) weeks after hospital admission. At 6 weeks after hospital admission, patients demonstrated impaired 129 Xe gas transfer (RBC:M) but normal lung microstructure (ADC, Lm D ). Minor ventilation abnormalities present in four patients were largely resolved in the 6–25 week period. At 12 week follow up, all patients with lung perfusion data available (n=6) showed an increase in both pulmonary blood volume and flow when compared to 6 weeks, though this was not statistically significant. At 12 and 25 week follow up, significant improvements in 129 Xe gas transfer were observed compared to 6-week examinations, however 129 Xe gas transfer remained abnormally low. Conclusions This study demonstrates that multinuclear MRI is sensitive to functional pulmonary changes in the follow up of patients who were hospitalised with COVID-19. Persistent impairment of xenon transfer may represent a physiological mechanism underlying ongoing symptoms in some patients and may indicate damage to the pulmonary microcirculation.

3.
Nat Commun ; 13(1): 1251, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740439

ABSTRACT

The trajectories of acquired immunity to severe acute respiratory syndrome coronavirus 2 infection are not fully understood. We present a detailed longitudinal cohort study of UK healthcare workers prior to vaccination, presenting April-June 2020 with asymptomatic or symptomatic infection. Here we show a highly variable range of responses, some of which (T cell interferon-gamma ELISpot, N-specific antibody) wane over time, while others (spike-specific antibody, B cell memory ELISpot) are stable. We use integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling OverNight) to explore this heterogeneity. We identify a subgroup of participants with higher antibody responses and interferon-gamma ELISpot T cell responses, and a robust trajectory for longer term immunity associates with higher levels of neutralising antibodies against the infecting (Victoria) strain and also against variants B.1.1.7 (alpha) and B.1.351 (beta). These variable trajectories following early priming may define subsequent protection from severe disease from novel variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antiviral Agents , Humans , Longitudinal Studies , Spike Glycoprotein, Coronavirus
4.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327338

ABSTRACT

Background: Long-COVID is an umbrella term used to describe ongoing symptoms following COVID-19 infection after four weeks. Symptoms are wide-ranging but breathlessness is one of the most common and can persist for months after the initial infection. Investigations including Computed Tomography (CT), and physiological measurements (lung function tests) are usually unremarkable. The mechanisms driving breathlessness remain unclear, and this may be hindering the development of effective treatments. Methods Eleven non-hospitalised Long-COVID (NHLC, 4 male), 12 post-hospitalised COVID-19 (PHC, 10 male) patients were recruited from a Post-COVID Assessment clinic, and thirteen healthy controls (6 female) were recruited to undergo Hyperpolarized Xenon Magnetic Resonance Imaging (Hp-XeMRI). NHLC and PHC participants underwent contemporaneous CT, Hp-XeMRI, lung function tests, 1-minute sit-to-stand test and breathlessness questionnaires. Statistical analysis included group and pair-wise comparisons between patients and controls, and correlations between patient clinical and imaging data. Results NHLC and PHC patients were 287 ± 79 [range 190-437] and 149 ± 68 [range 68-269] days from infection, respectively. All NHLC patients had normal CT scans, and the PHC had normal or near normal CT scans (0.3/25 ± 0.6 [range 0-2] and 7/25 ± 5 [range 4-8], respectively). There was a significant difference in TLco (%) between NHLC and PHC patients (76 ± 8 % vs 86 ± 8%, respectively, p = 0.04) but no differences in other measurements of lung function. There were significant differences in RBC:TP mean between volunteers (0.45 ± 0.07, range [0.33-0.55]) and PHC (0.31 ± 0.11, [range 0.16-0.37]) and NHLC (0.35 ± 0.09, [range 0.26-0.58]) patients, but not between NHLC and PHC (p = 0.26). Conclusion There are RBC:TP abnormalities in NHLC and PHC patients, with NHLC patients also demonstrating lower TLco than PHC patients despite their having normal CT scans. These abnormalities are present many months after the initial infection. Summary statement Hyperpolarized Xenon MRI and TLco demonstrate significantly impaired gas transfer in non-hospitalised long-COVID patients when all other investigations are normal.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-322827

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is normally controlled by effective host immunity including innate, humoral and cellular responses. However, the trajectories and correlates of acquired immunity, and the capacity of memory responses months after infection to neutralise variants of concern - which has important public health implications - is not fully understood. To address this, we studied a cohort of 78 UK healthcare workers who presented in April to June 2020 with symptomatic PCR-confirmed infection or who tested positive during an asymptomatic screening programme and tracked virus-specific B and T cell responses longitudinally at 5-6 time points each over 6 months, prior to vaccination. We observed a highly variable range of responses, some of which - T cell interferon-gamma (IFN-γ) ELISpot, N-specific antibody waned over time across the cohort, while others (spike-specific antibody, B cell memory ELISpot) were stable. In such cohorts, antiviral antibody has been linked to protection against re-infection. We used integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling Over Night) to explore this heterogeneity and to identify predictors of sustained immune responses. Hierarchical clustering defined a group of high and low antibody responders, which showed stability over time regardless of clinical presentation. These antibody responses correlated with IFN-γ ELISpot measures of T cell immunity and represent a subgroup of patients with a robust trajectory for longer term immunity. Importantly, this immune-phenotype associates with higher levels of neutralising antibodies not only against the infecting (Victoria) strain but also against variants B.1.1.7 (alpha) and B.1.351 (beta). Overall memory responses to SARS-CoV-2 show distinct trajectories following early priming, that may define subsequent protection against infection and severe disease from novel variants.

6.
Radiology ; 301(1): E353-E360, 2021 10.
Article in English | MEDLINE | ID: covidwho-1430241

ABSTRACT

Background SARS-CoV-2 targets angiotensin-converting enzyme 2-expressing cells in the respiratory tract. There are reports of breathlessness in patients many months after infection. Purpose To determine whether hyperpolarized xenon 129 MRI (XeMRI) imaging could be used to identify the possible cause of breathlessness in patients at 3 months after hospital discharge following COVID-19 infection. Materials and Methods This prospective study was undertaken between August and December of 2020, with patients and healthy control volunteers being enrolled. All patients underwent lung function tests; ventilation and dissolved-phase XeMRI, with the mean red blood cell (RBC) to tissue or plasma (TP) ratio being calculated; and a low-dose chest CT, with scans being scored for the degree of abnormalities after COVID-19. Healthy control volunteers underwent XeMRI. The intraclass correlation coefficient was calculated for volunteer and patient scans to assess repeatability. A Wilcoxon rank sum test and Cohen effect size calculation were performed to assess differences in the RBC/TP ratio between patients and control volunteers. Results Nine patients (mean age, 57 years ± 7 [standard deviation]; six male patients) and five volunteers (mean age, 29 years ± 3; five female volunteers) were enrolled. The mean time from hospital discharge for patients was 169 days (range, 116-254 days). There was a difference in the RBC/TP ratio between patients and control volunteers (0.3 ± 0.1 vs 0.5 ± 0.1, respectively; P = .001; effect size, 1.36). There was significant difference between the RBC and gas phase spectral full width at half maximum between volunteers and patients (median ± range, 567 ± 1 vs 507 ± 81 [P = .002] and 104 ± 2 vs 122 ± 17 [P = .004], respectively). Results were reproducible, with intraclass correlation coefficients of 0.82 and 0.88 being demonstrated for patients and volunteers, respectively. Participants had normal or nearly normal CT scans (mean, seven of 25; range, zero of 25 to 10 of 25). Conclusion Hyperpolarized xenon 129 MRI results showed alveolar capillary diffusion limitation in all nine patients after COVID-19 pneumonia, despite normal or nearly normal results at CT. © RSNA, 2021 See also the editorial by Dietrich in this issue.


Subject(s)
COVID-19/physiopathology , Dyspnea/physiopathology , Lung/diagnostic imaging , Lung/physiopathology , Magnetic Resonance Imaging/methods , Xenon Isotopes , Adult , Aged , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2
7.
Nat Commun ; 12(1): 2055, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1171493

ABSTRACT

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunoassay/methods , SARS-CoV-2/physiology , T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , Cell Proliferation , Cytokines/metabolism , HEK293 Cells , Health Personnel , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/metabolism , Pandemics , Peptides/metabolism , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL