Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMJ Open Respir Res ; 9(1)2022 08.
Article in English | MEDLINE | ID: covidwho-2001863

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic led to a steep increase in hospital and intensive care unit (ICU) admissions for acute respiratory failure worldwide. Early identification of patients at risk of clinical deterioration is crucial in terms of appropriate care delivery and resource allocation. We aimed to evaluate and compare the prognostic performance of Sequential Organ Failure Assessment (SOFA), Quick Sequential Organ Failure Assessment (qSOFA), Confusion, Uraemia, Respiratory Rate, Blood Pressure and Age ≥65 (CURB-65), Respiratory Rate and Oxygenation (ROX) index and Coronavirus Clinical Characterisation Consortium (4C) score to predict death and ICU admission among patients admitted to the hospital for acute COVID-19 infection. METHODS AND ANALYSIS: Consecutive adult patients admitted to the Geneva University Hospitals during two successive COVID-19 flares in spring and autumn 2020 were included. Discriminative performance of these prediction rules, obtained during the first 24 hours of hospital admission, were computed to predict death or ICU admission. We further exluded patients with therapeutic limitations and reported areas under the curve (AUCs) for 30-day mortality and ICU admission in sensitivity analyses. RESULTS: A total of 2122 patients were included. 216 patients (10.2%) required ICU admission and 303 (14.3%) died within 30 days post admission. 4C score had the best discriminatory performance to predict 30-day mortality (AUC 0.82, 95% CI 0.80 to 0.85), compared with SOFA (AUC 0.75, 95% CI 0.72 to 0.78), qSOFA (AUC 0.59, 95% CI 0.56 to 0.62), CURB-65 (AUC 0.75, 95% CI 0.72 to 0.78) and ROX index (AUC 0.68, 95% CI 0.65 to 0.72). ROX index had the greatest discriminatory performance (AUC 0.79, 95% CI 0.76 to 0.83) to predict ICU admission compared with 4C score (AUC 0.62, 95% CI 0.59 to 0.66), CURB-65 (AUC 0.60, 95% CI 0.56 to 0.64), SOFA (AUC 0.74, 95% CI 0.71 to 0.77) and qSOFA (AUC 0.59, 95% CI 0.55 to 0.62). CONCLUSION: Scores including age and/or comorbidities (4C and CURB-65) have the best discriminatory performance to predict mortality among inpatients with COVID-19, while scores including quantitative assessment of hypoxaemia (SOFA and ROX index) perform best to predict ICU admission. Exclusion of patients with therapeutic limitations improved the discriminatory performance of prognostic scores relying on age and/or comorbidities to predict ICU admission.


Subject(s)
COVID-19 , Organ Dysfunction Scores , Adult , COVID-19/diagnosis , COVID-19/therapy , Cohort Studies , Humans , Inpatients , Prognosis , ROC Curve , Retrospective Studies , SARS-CoV-2
2.
Sci Rep ; 12(1): 11085, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1908294

ABSTRACT

Severe COVID-19-related acute respiratory distress syndrome (C-ARDS) requires mechanical ventilation. While this intervention is often performed in the prone position to improve oxygenation, the underlying mechanisms responsible for the improvement in respiratory function during invasive ventilation and awake prone positioning in C-ARDS have not yet been elucidated. In this prospective observational trial, we evaluated the respiratory function of C-ARDS patients while in the supine and prone positions during invasive (n = 13) or non-invasive ventilation (n = 15). The primary endpoint was the positional change in lung regional aeration, assessed with electrical impedance tomography. Secondary endpoints included parameters of ventilation and oxygenation, volumetric capnography, respiratory system mechanics and intrapulmonary shunt fraction. In comparison to the supine position, the prone position significantly increased ventilation distribution in dorsal lung zones for patients under invasive ventilation (53.3 ± 18.3% vs. 43.8 ± 12.3%, percentage of dorsal lung aeration ± standard deviation in prone and supine positions, respectively; p = 0.014); whereas, regional aeration in both positions did not change during non-invasive ventilation (36.4 ± 11.4% vs. 33.7 ± 10.1%; p = 0.43). Prone positioning significantly improved the oxygenation both during invasive and non-invasive ventilation. For invasively ventilated patients reduced intrapulmonary shunt fraction, ventilation dead space and respiratory resistance were observed in the prone position. Oxygenation is improved during non-invasive and invasive ventilation with prone positioning in patients with C-ARDS. Different mechanisms may underly this benefit during these two ventilation modalities, driven by improved distribution of lung regional aeration, intrapulmonary shunt fraction and ventilation-perfusion matching. However, the differences in the severity of C-ARDS may have biased the sensitivity of electrical impedance tomography when comparing positional changes between the protocol groups.Trial registration: ClinicalTrials.gov (NCT04359407) and Registered 24 April 2020, https://clinicaltrials.gov/ct2/show/NCT04359407 .


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , COVID-19/complications , Capnography/methods , Humans , Lung/diagnostic imaging , Noninvasive Ventilation/standards , Prone Position , Prospective Studies , Respiration, Artificial/standards , Respiratory Distress Syndrome/virology , Supine Position
3.
Clin Transl Sci ; 15(7): 1796-1804, 2022 07.
Article in English | MEDLINE | ID: covidwho-1895963

ABSTRACT

During the latest pandemic, the RECOVERY study showed the benefits of dexamethasone (DEX) use in COVID-19 patients. Obesity has been proven to be an independent risk factor for severe forms of infection, but little information is available in the literature regarding DEX dose adjustment according to body weight. We conducted a prospective, observational, exploratory study at Geneva University Hospitals to assess the impact of weight on DEX pharmacokinetics (PK) in normal-weight versus obese COVID-19 hospitalized patients. Two groups of patients were enrolled: normal-weight and obese (body mass index [BMI] 18.5-25 and >30 kg/m2 , respectively). All patients received the standard of care therapy of 6 mg DEX orally. Blood samples were collected, and DEX concentrations were measured. The mean DEX AUC0-8 and Cmax were lower in the obese compared to the normal-weight group (572.02 ± 258.96 vs. 926.92 ± 552.12 ng h/ml and 138.67 ± 68.03 vs. 203.44 ± 126.30 ng/ml, respectively). A decrease in DEX AUC0-8 of 4% per additional BMI unit was observed, defining a significant relationship between weight and DEX AUC0-8 (p = 0.004, 95% CI 2-7%). In women, irrespective of the BMI, DEX AUC0-8 increased by 214% in comparison to men (p < 0.001, 95% CI 154-298%). Similarly, the mean Cmax increased by 205% in women (p < 0.001, 95% CI 141-297%). Conversely, no significant difference between the obese and normal-weight groups was observed for exploratory treatment outcomes, such as the length of hospitalization. BMI, weight, and gender significantly affected DEX AUC. We conclude that dose adjustment would be needed if the aim is to achieve the same exposures in normal-weight and obese patients.


Subject(s)
COVID-19 , Body Mass Index , COVID-19/drug therapy , Dexamethasone/adverse effects , Female , Humans , Male , Obesity/complications , Prospective Studies
6.
BMC Med Educ ; 21(1): 620, 2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1582076

ABSTRACT

BACKGROUND: The unfolding of the COVID-19 pandemic during spring 2020 has disrupted medical education worldwide. The University of Geneva decided to shift on-site classwork to online learning; many exams were transformed from summative to formative evaluations and most clinical activities were suspended. We aimed to investigate the perceived impact of those adaptations by the students at the Faculty of Medicine. METHODS: We sent an online self-administered survey to medical students from years 2 to 6 of the University of Geneva, three months after the beginning of the pandemic. The survey explored students' main activities during the first three months of the pandemic, the impact of the crisis on their personal life, on their training and on their professional identity, the level of stress they experienced and which coping strategies they developed. The survey consisted of open-ended and closed questions and was administered in French. RESULTS: A total of 58.8% of students responded (n = 467) and were homogeneously distributed across gender. At the time of the survey, two thirds of the participants were involved in COVID-19-related activities; 72.5% voluntarily participated, mainly fueled by a desire to help and feel useful. Many participants (58.8%) reported a feeling of isolation encountered since the start of the pandemic. Main coping strategies reported were physical activity and increased telecommunications with their loved ones. Most students described a negative impact of the imposed restrictions on their training, reporting decreased motivation and concentration in an unusual or distraction-prone study environment at home and missing interactions with peers and teachers. Students recruited to help at the hospital in the context of increasing staff needs reported a positive impact due to the enriched clinical exposure. Perceived stress levels were manageable across the surveyed population. If changed, the crisis had a largely positive impact on students' professional identity; most highlighted the importance of the health care profession for society and confirmed their career choice. CONCLUSION: Through this comprehensive picture, our study describes the perceived impact of the pandemic on University of Geneva medical students, their training and their professional identity three months after the start of the pandemic. These results allowed us to gain valuable insight that reinforced the relevance of assessing the evolution of the situation in the long run and the importance of developing institutional support tools for medical students throughout their studies.


Subject(s)
COVID-19 , Students, Medical , Adaptation, Psychological , Humans , Pandemics , SARS-CoV-2
8.
Respiration ; 100(8): 786-793, 2021.
Article in English | MEDLINE | ID: covidwho-1238620

ABSTRACT

BACKGROUND: The COVID-19 pandemic has led to shortage of intensive care unit (ICU) capacity. We developed a triage strategy including noninvasive respiratory support and admission to the intermediate care unit (IMCU). ICU admission was restricted to patients requiring invasive ventilation. OBJECTIVES: The aim of this study is to describe the characteristics and outcomes of patients admitted to the IMCU. METHOD: Retrospective cohort including consecutive patients admitted between March 28 and April 27, 2020. The primary outcome was the proportion of patients with severe hypoxemic respiratory failure avoiding ICU admission. Secondary outcomes included the rate of emergency intubation, 28-day mortality, and predictors of ICU admission. RESULTS: One hundred fifty-seven patients with COVID-19-associated pneumonia were admitted to the IMCU. Among the 85 patients admitted for worsening respiratory failure, 52/85 (61%) avoided ICU admission. In multivariate analysis, PaO2/FiO2 (OR 0.98; 95% CI: 0.96-0.99) and BMI (OR 0.88; 95% CI: 0.78-0.98) were significantly associated with ICU admission. No death or emergency intubation occurred in the IMCU. CONCLUSIONS: IMCU admission including standardized triage criteria, self-proning, and noninvasive respiratory support prevents ICU admission for a large proportion of patients with COVID-19 hypoxemic respiratory failure. In the context of the COVID-19 pandemic, IMCUs may play an important role in preserving ICU capacity by avoiding ICU admission for patients with worsening respiratory failure and allowing early discharge of ICU patients.


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiratory Care Units/statistics & numerical data , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/mortality , Female , Health Personnel/statistics & numerical data , Humans , Male , Middle Aged , Respiratory Insufficiency/virology , Retrospective Studies , Sick Leave/statistics & numerical data , Switzerland/epidemiology
9.
Eur J Hosp Pharm ; 2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1175179

ABSTRACT

During Switzerland's first wave of COVID-19, clinical pharmacy activities during medical rounds in Geneva University Hospitals were replaced by targeted remote interventions. We describe using the electronic PharmaCheck system to screen high-risk situations of adverse drug events (ADEs), particularly targeting prescriptions of lopinavir/ritonavir (LPVr) and hydroxychloroquine (HCQ) in the presence of contraindications or prescriptions outside institutional guidelines. Of 416 patients receiving LPVr and/or HCQ, 182 alerts were triggered for 164 (39.4%) patients. The main associated risk factors of ADEs were drug-drug interactions, QTc interval prolongation, electrolyte disorder and inadequate LPVr dosage. Therapeutic optimisation recommended by a pharmacist or proposals for additional monitoring were accepted in 80% (n=36) of cases. Combined with pharmacist contextualisation to the clinical context, PharmaCheck made it possible to successfully adapt clinical pharmacist activities by switching from a global to a targeted analysis mode in an emergency context.

10.
ERJ Open Res ; 7(1)2021 Jan.
Article in English | MEDLINE | ID: covidwho-1133579

ABSTRACT

RATIONALE AND OBJECTIVES: Prone positioning as a complement to oxygen therapy to treat hypoxaemia in coronavirus disease 2019 (COVID-19) pneumonia in spontaneously breathing patients has been widely adopted, despite a lack of evidence for its benefit. We tested the hypothesis that a simple incentive to self-prone for a maximum of 12 h per day would decrease oxygen needs in patients admitted to the ward for COVID-19 pneumonia on low-flow oxygen therapy. METHODS: 27 patients with confirmed COVID-19 pneumonia admitted to Geneva University Hospitals were included in the study. 10 patients were randomised to self-prone positioning and 17 to usual care. MEASUREMENTS AND MAIN RESULTS: Oxygen needs assessed by oxygen flow on nasal cannula at inclusion were similar between groups. 24 h after starting the intervention, the median (interquartile range (IQR)) oxygen flow was 1.0 (0.1-2.9) L·min-1 in the prone position group and 2.0 (0.5-3.0) L·min-1 in the control group (p=0.507). Median (IQR) oxygen saturation/fraction of inspired oxygen ratio was 390 (300-432) in the prone position group and 336 (294-422) in the control group (p=0.633). One patient from the intervention group who did not self-prone was transferred to the high-dependency unit. Self-prone positioning was easy to implement. The intervention was well tolerated and only mild side-effects were reported. CONCLUSIONS: Self-prone positioning in patients with COVID-19 pneumonia requiring low-flow oxygen therapy resulted in a clinically meaningful reduction of oxygen flow, but without reaching statistical significance.

SELECTION OF CITATIONS
SEARCH DETAIL