Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329767

ABSTRACT

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced neutralizing antibody responses for key variants in an Asian volunteer cohort. We demonstrate a reduction in neutralizing antibody titres across all groups six months post-vaccination and show a marked reduction in the serological binding and neutralizing response targeting Omicron compared to other viral variants. We also highlight the increase in cross-protective neutralizing antibody responses against Omicron induced by a third dose (booster) of vaccine. These data illustrate how key virological factors such as immune escape mutation combined with host factors such as age and sex of the vaccinated individuals influence the strength and duration of cross-protective serological immunity for COVID-19.

2.
Vaccines (Basel) ; 10(2)2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1667380

ABSTRACT

SARS-CoV-2-specific antibody responses are engendered in human milk after BNT162b2 vaccination. However, the emergence of variants of concern (VOCs) raises concerns about the specificity of and potential cross-protection mediated by milk antibody responses, which are crucial for passive immunity transferred from breastfeeding mothers to their infants. In this study, we collected milk samples at three different time points pre- and post-vaccination, and measured milk IgA antibody binding to the receptor binding domain (RBD) of the original Wuhan-Hu-1 strain, and the four VOCs, namely Alpha, Beta, Gamma and Delta. We report a significant level of anti-RBD IgA in milk collected at 4-6 weeks after the second dose of vaccination compared to pre-vaccination. We observed around a 30% reduction in binding to most VOCs, including the major circulating Delta variant, compared to the original Wuhan-Hu-1 strain. As COVID-19 vaccines may take some time to be approved for infants, these individuals remain at risk for severe disease and rely mainly on transferred passive immunity. Our findings support the current recommendations for vaccinating lactating women with the aim of transferring mucosal immunity to breastfeeding infants.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-474251

ABSTRACT

Previous studies on the structural relationship between human antibodies and SARS-CoV-2 have focused on generating static snapshots of antibody complexes with the Spike trimer. However, antibody-antigen interactions are dynamic, with significant binding-induced allosteric effects on conformations of antibody and its target antigen. In this study, we employ hydrogen-deuterium exchange mass spectrometry, in vitro assays, and molecular dynamics simulations to investigate the allosteric perturbations linked to binding events between a group of human antibodies with differential functional activities, and the Spike trimer from SARS-CoV-2. Our investigations have revealed key dynamic features that define weakly or moderately neutralizing antibodies versus those with strong neutralizing activity. These results provide mechanistic insights into the functional modes of human antibodies against COVID-19, and provide a rationale for effective antiviral strategies. TeaserDifferent neutralizing antibodies induce site-specific allosteric effects across SARS-CoV-2 Spike protein

4.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295347

ABSTRACT

We detected the presence of SARS-CoV-2 specific IgA against all major VOCs in milk out to 6 weeks after D2 of BNT162b2. These likely confer some protection to the breastfed infants, who are ineligible for vaccination and are at risk of severe COVID-19. However, we detected significantly reduced milk IgA binding to VOCs, including the globally dominant Delta variant, suggesting reduced protection for breastfeeding infants. Additionally, these antibodies were significantly reduced by as early as 4-6 weeks after D2.

5.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294854

ABSTRACT

The COVID-19 pandemic has caused an evolving public health crisis and challenged the medical system globally, especially in the rural-stricken regions. There is concern about the spread of coronavirus in regions with lower education level, weaker health systems and underdeveloped economy. The risk of viral transmission in HD center is elevated because of the densely-populated and high mobility in an enclosed environment.This paper demonstrated the main experiences and strategies of preventing secondary COVID-19 transmission in a HD center from a poverty-stricken rural region in China. Data of subjects including 17 medical workers and 249 patients were collected from the HD center in Huangchuan County People’s Hospital from February to April 2020. It is the first paper to provide the experiences and strategies about preventing COVID-19 secondary transmission in HD center for poverty-stricken rural region.

8.
NPJ Vaccines ; 6(1): 105, 2021 Aug 19.
Article in English | MEDLINE | ID: covidwho-1366818

ABSTRACT

Lactating women can produce protective antibodies in their milk after vaccination, which has informed antenatal vaccination programs for diseases such as influenza and pertussis. However, whether SARS-CoV-2-specific antibodies are produced in human milk as a result of COVID-19 vaccination is still unclear. In this study, we show that lactating mothers who received the BNT162b2 vaccine secreted SARS-CoV-2-specific IgA and IgG antibodies into milk, with the most significant increase at 3-7 days post-dose 2. Virus-specific IgG titers were stable out to 4-6 weeks after dose 2. In contrast, SARS-CoV-2-specific IgA levels showed substantial decay. Vaccine mRNA was detected in few milk samples (maximum of 2 ng/ml), indicative of minimal transfer. Additionally, infants who consumed post-vaccination human milk had no reported adverse effects up to 28 days post-ingestion. Our results define the safety and efficacy profiles of the vaccine in this demographic and provide initial evidence for protective immunity conferred by milk-borne SARS-CoV-2-specific antibodies. Taken together, our study supports recommendations for uninterrupted breastfeeding subsequent to mRNA vaccination against COVID-19.

9.
PLoS One ; 16(1): e0245209, 2021.
Article in English | MEDLINE | ID: covidwho-1067409

ABSTRACT

Kidneys are one of the targets for SARS-CoV-2, it is reported that up to 36% of patients with SARS-CoV-2 infection would develop into acute kidney injury (AKI). AKI is associated with high mortality in the clinical setting and contributes to the transition of AKI to chronic kidney disease (CKD). Up to date, the underlying mechanisms are obscure and there is no effective and specific treatment for COVID-19-induced AKI. In the present study, we investigated the mechanisms and interactions between Quercetin and SARS-CoV-2 targets proteins by using network pharmacology and molecular docking. The renal protective effects of Quercetin on COVID-19-induced AKI may be associated with the blockade of the activation of inflammatory, cell apoptosis-related signaling pathways. Quercetin may also serve as SARS-CoV-2 inhibitor by binding with the active sites of SARS-CoV-2 main protease 3CL and ACE2, therefore suppressing the functions of the proteins to cut the viral life cycle. In conclusion, Quercetin may be a novel therapeutic agent for COVID-19-induced AKI. Inhibition of inflammatory, cell apoptosis-related signaling pathways may be the critical mechanisms by which Quercetin protects kidney from SARS-CoV-2 injury.


Subject(s)
Acute Kidney Injury/drug therapy , Acute Kidney Injury/virology , COVID-19/drug therapy , COVID-19/physiopathology , Quercetin/pharmacology , Databases, Factual , Databases, Genetic , Humans , Molecular Docking Simulation , Protein Interaction Mapping/methods , Protein Interaction Maps , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
10.
Preprint in English | bioRxiv | ID: ppbiorxiv-337212

ABSTRACT

The Spike (S) protein is the main handle for SARS-CoV-2 to enter host cells through surface ACE2 receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, we have mapped the S:ACE2 interface and uncovered long-range allosteric propagation of ACE2 binding to sites critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 [A] away while dampening dynamics of the stalk hinge (central helix and heptad repeat) regions ~ 130 [A] away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the pre-fusion state. Our findings provide a mechanistic basis for S:ACE2 complex formation, critical for proteolytic processing and viral-host membrane fusion and highlight protease docking sites flanking the S1/S2 cleavage site, fusion peptide and heptad repeat 1 (HR1) as allosterically exposed cryptic hotspots for potential therapeutic development. One Sentence SummarySARS-CoV-2 spike protein binding to receptor ACE2 allosterically enhances furin proteolysis at distal S1/S2 cleavage sites

SELECTION OF CITATIONS
SEARCH DETAIL