Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Microbiol Spectr ; 10(1): e0068121, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1691411

ABSTRACT

The N501Y amino acid mutation caused by a single point substitution A23063T in the spike gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is possessed by three variants of concern (VOCs), B.1.1.7, B.1.351, and P.1. A rapid screening tool using this mutation is important for surveillance during the coronavirus disease 2019 (COVID-19) pandemic. We developed and validated a single nucleotide polymorphism real-time reverse transcription PCR assay using allelic discrimination of the spike gene N501Y mutation to screen for potential variants of concern and differentiate them from SARS-CoV-2 lineages without the N501Y mutation. A total of 160 clinical specimens positive for SARS-CoV-2 were characterized as mutant (N501Y) or N501 wild type by Sanger sequencing and were subsequently tested with the N501Y single nucleotide polymorphism real-time reverse transcriptase PCR assay. Our assay, compared to Sanger sequencing for single nucleotide polymorphism detection, demonstrated positive percent agreement of 100% for all 57 specimens displaying the N501Y mutation, which were confirmed by Sanger sequencing to be typed as A23063T, including one specimen with mixed signal for wild type and mutant. Negative percent agreement was 100% in all 103 specimens typed as N501 wild type, with A23063 identified as wild type by Sanger sequencing. The identification of circulating SARS-CoV-2 lineages carrying an N501Y mutation is critical for surveillance purposes. Current identification methods rely primarily on Sanger sequencing or whole-genome sequencing, which are time consuming, labor intensive, and costly. The assay described herein is an efficient tool for high-volume specimen screening for SARS-CoV-2 VOCs and for selecting specimens for confirmatory Sanger or whole-genome sequencing. IMPORTANCE During the coronavirus disease 2019 (COVID-19) pandemic, several variants of concern (VOCs) have been detected, for example, B.1.1.7, B.1.351, P.1, and B.1.617.2. The VOCs pose a threat to public health efforts to control the spread of the virus. As such, surveillance and monitoring of these VOCs is of the utmost importance. Our real-time RT-PCR assay helps with surveillance by providing an easy method to quickly survey SARS-CoV-2 specimens for VOCs carrying the N501Y single nucleotide polymorphism (SNP). Samples that test positive for the N501Y mutation in the spike gene with our assay can be sequenced to identify the lineage. Thus, our assay helps to focus surveillance efforts and decrease turnaround times.


Subject(s)
COVID-19/diagnosis , Mutation, Missense , Point Mutation , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Alleles , Amino Acid Substitution , COVID-19/epidemiology , COVID-19/virology , Genes, Viral , Humans , Mass Screening , Ontario/epidemiology , Polymorphism, Single Nucleotide , Population Surveillance , Prevalence , Reproducibility of Results , Sensitivity and Specificity
3.
Nat Microbiol ; 7(3): 379-385, 2022 03.
Article in English | MEDLINE | ID: covidwho-1671571

ABSTRACT

SARS-CoV-2 variants of concern (VOC) are more transmissible and may have the potential for increased disease severity and decreased vaccine effectiveness. We estimated the effectiveness of BNT162b2 (Pfizer-BioNTech Comirnaty), mRNA-1273 (Moderna Spikevax) and ChAdOx1 (AstraZeneca Vaxzevria) vaccines against symptomatic SARS-CoV-2 infection and COVID-19 hospitalization or death caused by the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOC in Ontario, Canada, using a test-negative design study. We identified 682,071 symptomatic community-dwelling individuals who were tested for SARS-CoV-2, and 15,269 individuals with a COVID-19 hospitalization or death. Effectiveness against symptomatic infection ≥7 d after two doses was 89-92% against Alpha, 87% against Beta, 88% against Gamma, 82-89% against Beta/Gamma and 87-95% against Delta across vaccine products. The corresponding estimates ≥14 d after one dose were lower. Effectiveness estimates against hospitalization or death were similar to or higher than against symptomatic infection. Effectiveness against symptomatic infection was generally lower for older adults (≥60 years) than for younger adults (<60 years) for most of the VOC-vaccine combinations. Our findings suggest that jurisdictions facing vaccine supply constraints may benefit from delaying the second dose in younger individuals to more rapidly achieve greater overall population protection; however, older adults would likely benefit most from minimizing the delay in receiving the second dose to achieve adequate protection against VOC.


Subject(s)
/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , /administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , /genetics , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , /genetics , Female , Humans , Male , Middle Aged , Ontario/epidemiology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Young Adult
4.
Infect Control Hosp Epidemiol ; : 1-5, 2021 Aug 09.
Article in English | MEDLINE | ID: covidwho-1586120

ABSTRACT

OBJECTIVES: Performance characteristics of SARS-CoV-2 nucleic acid detection assays are understudied within contexts of low pre-test probability, including screening asymptomatic persons without epidemiological links to confirmed cases, or asymptomatic surveillance testing. SARS-CoV-2 detection without symptoms may represent presymptomatic or asymptomatic infection, resolved infection with persistent RNA shedding, or a false-positive test. This study assessed the positive predictive value of SARS-CoV-2 real-time reverse transcription polymerase chain reaction (rRT-PCR) assays by retesting positive specimens from 5 pre-test probability groups ranging from high to low with an alternate assay. METHODS: In total, 122 rRT-PCR positive specimens collected from unique patients between March and July 2020 were retested using a laboratory-developed nested RT-PCR assay targeting the RNA-dependent RNA polymerase (RdRp) gene followed by Sanger sequencing. RESULTS: Significantly fewer (15.6%) positive results in the lowest pre-test probability group (facilities with institution-wide screening having ≤3 positive asymptomatic cases) were reproduced with the nested RdRp gene RT-PCR assay than in each of the 4 groups with higher pre-test probability (individual group range, 50.0%-85.0%). CONCLUSIONS: Large-scale SARS-CoV-2 screening testing initiatives among low pre-test probability populations should be evaluated thoroughly prior to implementation given the risk of false-positive results and consequent potential for harm at the individual and population level.

5.
CMAJ ; 193(28): E1098-E1106, 2021 07 19.
Article in French | MEDLINE | ID: covidwho-1435633

ABSTRACT

CONTEXTE: Le déploiement de mesures de gestion des éclosions de SRAS-CoV-2 dans les établissements de soins de longue durée en Ontario a permis d'en réduire la fréquence et la gravité. Nous décrivons ici les données épidémiologiques et de laboratoire d'une de ces premières éclosions en Ontario afin de déterminer les facteurs associés à son importance et les impacts des interventions progressives de lutte contre les infections appliquées pendant la durée de l'éclosion. MÉTHODES: Nous avons obtenu du bureau de santé la liste des cas et les données de l'éclosion afin de décrire les cas chez les résidents et le personnel, leur gravité et leur distribution dans le temps et à l'intérieur de l'établissement touché. Quand elles étaient disponibles, nous avons obtenu des données concernant les échantillons soumis au laboratoire de Santé publique Ontario et effectué un séquençage complet et une analyse phylogénétique des échantillons viraux de l'éclosion. RÉSULTATS: Sur les 65 résidents de l'établissement de soins de longue durée, 61 (94 %) ont contracté le SRAS-CoV-2, le taux de létalité étant de 45 % (28/61). Parmi les 67 employés initiaux, 34 (51 %) ont contracté le virus, et aucun n'est décédé. Lorsque l'éclosion a été déclarée, 12 employés, 2 visiteurs et 9 résidents présentaient des symptômes. Parmi les résidents, les cas se trouvaient dans 3 des 4 secteurs de l'établissement. L'analyse phylogénétique a montré une forte similitude des séquences; une seule autre souche de SRAS-CoV-2 génétiquement distincte a été identifiée chez un employé à la troisième semaine de l'éclosion. Après le déploiement de toutes les mesures de gestion de l'éclosion, aucun cas n'a été identifié parmi les 26 nouveaux employés appelés en renfort. INTERPRÉTATION: La propagation rapide et non détectée du virus dans un établissement de soins de longue durée a donné lieu à des taux élevés d'infection chez les résidents et le personnel. L'application progressive de mesures de gestion après le pic de l'éclosion a permis d'éviter la contamination du personnel appelé en renfort et fait désormais partie des politiques à long terme de prévention des éclosions en Ontario.


Subject(s)
COVID-19/epidemiology , Long-Term Care/statistics & numerical data , Pandemics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Ontario/epidemiology , Retrospective Studies , Young Adult
6.
Lancet Reg Health Am ; 1: 100015, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1397539

ABSTRACT

BACKGROUND: The ongoing coronavirus disease 2019 (COVID-19) pandemic has resulted in implementation of public health measures worldwide to mitigate disease spread, including; travel restrictions, lockdowns, messaging on handwashing, use of face coverings and physical distancing. As the pandemic progresses, exceptional decreases in seasonal respiratory viruses are increasingly reported. We aimed to evaluate the impact of the pandemic on laboratory confirmed detection of seasonal non-SARS-CoV-2 respiratory viruses in Canada. METHODS: Epidemiologic data were obtained from the Canadian Respiratory Virus Detection Surveillance System. Weekly data from the week ending 30th August 2014 until the week ending the 13th March 2021 were analysed. We compared trends in laboratory detection and test volumes during the 2020/2021 season with pre-pandemic seasons from 2014 to 2019. FINDINGS: We observed a dramatically lower percentage of tests positive for all seasonal respiratory viruses during 2020-2021 compared to pre-pandemic seasons. For influenza A and B the percent positive decreased to 0•0015 and 0•0028 times that of pre-pandemic levels respectively and for RSV, the percent positive dropped to 0•0169 times that of pre-pandemic levels. Ongoing detection of enterovirus/rhinovirus occurred, with regional variation in the epidemic patterns and intensity. INTERPRETATION: We report an effective absence of the annual seasonal epidemic of most seasonal respiratory viruses in 2020/2021. This dramatic decrease is likely related to implementation of multi-layered public health measures during the pandemic. The impact of such measures may have relevance for public health practice in mitigating seasonal respiratory virus epidemics and for informing responses to future respiratory virus pandemics. FUNDING: No additional funding source was required for this study.

7.
BMJ ; 374: n1943, 2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367424

ABSTRACT

OBJECTIVE: To estimate the effectiveness of mRNA covid-19 vaccines against symptomatic infection and severe outcomes (hospital admission or death). DESIGN: Test negative design study. SETTING: Ontario, Canada between 14 December 2020 and 19 April 2021. PARTICIPANTS: 324 033 community dwelling people aged ≥16 years who had symptoms of covid-19 and were tested for SARS-CoV-2. INTERVENTIONS: BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine. MAIN OUTCOME MEASURES: Laboratory confirmed SARS-CoV-2 by reverse transcription polymerase chain reaction (RT-PCR) and hospital admissions and deaths associated with SARS-CoV-2 infection. Multivariable logistic regression was adjusted for personal and clinical characteristics associated with SARS-CoV-2 and vaccine receipt to estimate vaccine effectiveness against symptomatic infection and severe outcomes. RESULTS: Of 324 033 people with symptoms, 53 270 (16.4%) were positive for SARS-CoV-2 and 21 272 (6.6%) received at least one dose of vaccine. Among participants who tested positive, 2479 (4.7%) were admitted to hospital or died. Vaccine effectiveness against symptomatic infection observed ≥14 days after one dose was 60% (95% confidence interval 57% to 64%), increasing from 48% (41% to 54%) at 14-20 days after one dose to 71% (63% to 78%) at 35-41 days. Vaccine effectiveness observed ≥7 days after two doses was 91% (89% to 93%). Vaccine effectiveness against hospital admission or death observed ≥14 days after one dose was 70% (60% to 77%), increasing from 62% (44% to 75%) at 14-20 days to 91% (73% to 97%) at ≥35 days, whereas vaccine effectiveness observed ≥7 days after two doses was 98% (88% to 100%). For adults aged ≥70 years, vaccine effectiveness estimates were observed to be lower for intervals shortly after one dose but were comparable to those for younger people for all intervals after 28 days. After two doses, high vaccine effectiveness was observed against variants with the E484K mutation. CONCLUSIONS: Two doses of mRNA covid-19 vaccines were observed to be highly effective against symptomatic infection and severe outcomes. Vaccine effectiveness of one dose was observed to be lower, particularly for older adults shortly after the first dose.


Subject(s)
COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Vaccines/therapeutic use , COVID-19/mortality , Patient Admission/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , Ontario/epidemiology , SARS-CoV-2 , Treatment Outcome , Young Adult
8.
PLoS One ; 16(7): e0253941, 2021.
Article in English | MEDLINE | ID: covidwho-1304461

ABSTRACT

Accurate SARS-CoV-2 diagnosis is essential to guide prevention and control of COVID-19. Here we examine SARS-CoV-2 molecular-based test performance characteristics and summarize case-level data related to COVID-19 diagnosis. From January 11 through April 22, 2020, Public Health Ontario conducted SARS-CoV-2 testing of 86,942 specimens collected from 80,354 individuals, primarily using real-time reverse-transcription polymerase chain reaction (rRT-PCR) methods. We analyzed test results across specimen types and for individuals with multiple same-day and multi-day collected specimens. Nasopharyngeal compared to throat swabs had a higher positivity (8.8% vs. 4.8%) and an adjusted estimate 2.9 Ct lower (SE = 0.5, p<0.001). Same-day specimens showed high concordance (98.8%), and the median Ct of multi-day specimens increased over time. Symptomatic cases had rRT-PCR results with an adjusted estimate 3.0 Ct (SE = 0.5, p<0.001) lower than asymptomatic/pre-symptomatic cases. Overall test sensitivity was 84.6%, with a negative predictive value of 95.5%. Molecular testing is the mainstay of SARS-CoV-2 diagnosis and testing protocols will continue to be dynamic and iteratively modified as more is learned about this emerging pathogen.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Ontario/epidemiology
9.
J Clin Virol ; 141: 104896, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1267740

ABSTRACT

BACKGROUND: Point-of-care tests (POCT) are promising tools to detect SARS-CoV-2 in specific settings. Initial reports suggest the ID NOW™ COVID-19 assay (Abbott Diagnostics Inc, USA) is less sensitive than standard real-time reverse transcription polymerase chain reaction (rRT-PCR) assays. This has raised concern over false negatives in SARS-CoV-2 POCT. OBJECTIVES: We compared the performance of the ID NOW™ COVID-19 assay to our in-house rRT-PCR assay to assess whether dry swabs used in ID NOW™ testing could be stored in transport media and be re-tested by rRT-PCR for redundancy and to provide material for further investigation. METHODS: Paired respiratory swabs collected from patients at three acute care hospitals were used. One swab in transport media (McMaster Molecular Media (MMM)) was tested for SARS-CoV-2 by a laboratory-developed two-target rRT-PCR assay. The second was stored dry in a sterile container and tested by the ID NOW™ COVID-19 assay. Following ID NOW™ testing, dry swabs were stored in MMM for up to 48 h and re-tested by rRT-PCR. Serially diluted SARS-CoV-2 particles were used to assess the impact of heat inactivation and storage time. RESULTS: Respiratory swabs (n = 343) from 179 individuals were included. Using rRT-PCR results as the comparator, the ID NOW™ COVID-19 assay had positive (PPA) and negative (NPA) percent agreements of 87.0% (95% CI:0.74-0.94) and 99.7% (95% CI:0.98-0.99). Re-tested swabs placed in MMM following ID NOW testing had PPA and NPA of 88.8% (95% CI:0.76-0.95) and 99.7% (95% CI:0.98-0.99), respectively. CONCLUSIONS: Storing spent dry swabs in transport media for redundancy rRT-PCR testing is a potential approach to address possible false negatives with the ID NOW™ COVID-19 assay.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Point-of-Care Testing , Sensitivity and Specificity , Specimen Handling
10.
Nano Lett ; 21(12): 5209-5216, 2021 06 23.
Article in English | MEDLINE | ID: covidwho-1263457

ABSTRACT

The ability to rapidly diagnose, track, and disseminate information for SARS-CoV-2 is critical to minimize its spread. Here, we engineered a portable smartphone-based quantum barcode serological assay device for real-time surveillance of patients infected with SARS-CoV-2. Our device achieved a clinical sensitivity of 90% and specificity of 100% for SARS-CoV-2, as compared to 34% and 100%, respectively, for lateral flow assays in a head-to-head comparison. The lateral flow assay misdiagnosed ∼2 out of 3 SARS-CoV-2 positive patients. Our quantum dot barcode device has ∼3 times greater clinical sensitivity because it is ∼140 times more analytically sensitive than lateral flow assays. Our device can diagnose SARS-CoV-2 at different sampling dates and infectious severity. We developed a databasing app to provide instantaneous results to inform patients, physicians, and public health agencies. This assay and device enable real-time surveillance of SARS-CoV-2 seroprevalence and potential immunity.


Subject(s)
COVID-19 , Quantum Dots , Humans , Immunoassay , SARS-CoV-2 , Sensitivity and Specificity , Seroepidemiologic Studies , Smartphone
12.
CMAJ ; 193(19): E681-E688, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1231266

ABSTRACT

BACKGROUND: The implementation of outbreak management measures has decreased the frequency and severity of SARS-CoV-2 outbreaks in Ontario long-term care homes. We describe the epidemiological and laboratory data from one of the first such outbreaks in Ontario to assess factors associated with its severity, and the impact of progressive interventions for infection control over the course of the outbreak. METHODS: We obtained line list and outbreak data from the public health unit to describe resident and staff cases, severity and distribution of cases over time and within the outbreak facility. Where available, we obtained data on laboratory specimens from the Public Health Ontario Laboratory and performed whole genome sequencing and phylogenetic analysis of viral specimens from the outbreak. RESULTS: Among 65 residents of the long-term care home, 61 (94%) contracted SARS-CoV-2, with a case fatality rate of 45% (28/61). Among 67 initial staff, 34 (51%) contracted the virus and none died. When the outbreak was declared, 12 staff, 2 visitors and 9 residents had symptoms. Resident cases were located in 3 of 4 areas of the home. Phylogenetic analysis showed tight clustering of cases, with only 1 additional strain of genetically distinct SARS-CoV-2 identified from a staff case in the third week of the outbreak. No cases were identified among 26 new staff brought into the home after full outbreak measures were implemented. INTERPRETATION: Rapid and undetected viral spread in a long-term care home led to high rates of infection among residents and staff. Progressive implementation of outbreak measures after the peak of cases prevented subsequent staff cases and are now part of long-term care outbreak policy in Ontario.


Subject(s)
COVID-19/epidemiology , Long-Term Care , Nursing Homes , COVID-19/mortality , COVID-19/prevention & control , COVID-19/virology , Humans , Infection Control , Ontario/epidemiology , Pandemics , Phylogeny , SARS-CoV-2/genetics
13.
Clin Infect Dis ; 71(16): 2285-2288, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153173

ABSTRACT

Influenza vaccine effectiveness against influenza and noninfluenza respiratory viruses (NIRVs) was assessed by test-negative design using historic datasets of the community-based Canadian Sentinel Practitioner Surveillance Network, spanning 2010-2011 to 2016-2017. Vaccine significantly reduced the risk of influenza illness by >40% with no effect on coronaviruses or other NIRV risk.


Subject(s)
Coronavirus Infections/epidemiology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Respiratory Tract Infections/virology , Adolescent , Adult , Aged , Canada/epidemiology , Case-Control Studies , Child , Child, Preschool , Coronavirus Infections/etiology , Female , Humans , Immunogenicity, Vaccine , Infant , Influenza Vaccines/administration & dosage , Influenza, Human/epidemiology , Male , Middle Aged , Respiratory Tract Infections/prevention & control , Retrospective Studies , Risk Factors , Seasons , Sentinel Surveillance , Young Adult
14.
Clin Infect Dis ; 71(16): 2207-2210, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153135

ABSTRACT

We report diagnosis and management of the first laboratory-confirmed case of coronavirus disease 2019 (COVID-19) hospitalized in Toronto, Canada. No healthcare-associated transmission occurred. In the face of a potential pandemic of COVID-19, we suggest sustainable and scalable control measures developed based on lessons learned from severe acute respiratory syndrome.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , SARS Virus , Betacoronavirus , COVID-19 , COVID-19 Testing , Canada , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , SARS-CoV-2
15.
Viruses ; 13(1)2021 Jan 18.
Article in English | MEDLINE | ID: covidwho-1059594

ABSTRACT

BACKGROUND: Co-infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with respiratory viruses, bacteria and fungi have been reported to cause a wide range of illness. OBJECTIVES: We assess the prevalence of co-infection of SARS-CoV-2 with seasonal respiratory viruses, document the respiratory viruses detected among individuals tested for SARS-CoV-2, and describe characteristics of individuals with respiratory virus co-infection detected. METHODS: Specimens included in this study were submitted as part of routine clinical testing to Public Health Ontario Laboratory from individuals requiring testing for SARS-CoV-2 and/or seasonal respiratory viruses. RESULTS: Co-infection was detected in a smaller proportion (2.5%) of individuals with laboratory confirmed SARS-CoV-2 than those with seasonal respiratory viruses (4.3%); this difference was not significant. Individuals with any respiratory virus co-infection were more likely to be younger than 65 years of age and male than those with single infection. Those with SARS-CoV-2 co-infection manifested mostly mild respiratory symptoms. CONCLUSIONS: Findings of this study may not support routine testing for seasonal respiratory viruses among all individuals tested for SARS-CoV-2, as they were rare during the study period nor associated with severe disease. However, testing for seasonal respiratory viruses should be performed in severely ill individuals, in which detection of other viruses may assist with patient management.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Respiratory Tract Infections/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , Canada/epidemiology , Child , Child, Preschool , Coinfection/virology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Ontario/epidemiology , Prevalence , Respiratory Tract Infections/complications , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification , Young Adult
16.
ACS Nano ; 14(4): 3822-3835, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-832348

ABSTRACT

COVID-19 has spread globally since its discovery in Hubei province, China in December 2019. A combination of computed tomography imaging, whole genome sequencing, and electron microscopy were initially used to screen and identify SARS-CoV-2, the viral etiology of COVID-19. The aim of this review article is to inform the audience of diagnostic and surveillance technologies for SARS-CoV-2 and their performance characteristics. We describe point-of-care diagnostics that are on the horizon and encourage academics to advance their technologies beyond conception. Developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak would be useful in preventing future epidemics.


Subject(s)
Betacoronavirus/pathogenicity , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Smartphone , COVID-19 , COVID-19 Testing , Humans , Mobile Applications , Nucleic Acid Amplification Techniques , Pandemics , Population Surveillance , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Tomography, X-Ray Computed , Viral Proteins/analysis
17.
Sci Rep ; 10(1): 14031, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-724696

ABSTRACT

The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was declared on March 11, 2020 by the World Health Organization. As of the 31st of May, 2020, there have been more than 6 million COVID-19 cases diagnosed worldwide and over 370,000 deaths, according to Johns Hopkins. Thousands of SARS-CoV-2 strains have been sequenced to date, providing a valuable opportunity to investigate the evolution of the virus on a global scale. We performed a phylogenetic analysis of over 1,225 SARS-CoV-2 genomes spanning from late December 2019 to mid-March 2020. We identified a missense mutation, D614G, in the spike protein of SARS-CoV-2, which has emerged as a predominant clade in Europe (954 of 1,449 (66%) sequences) and is spreading worldwide (1,237 of 2,795 (44%) sequences). Molecular dating analysis estimated the emergence of this clade around mid-to-late January (10-25 January) 2020. We also applied structural bioinformatics to assess the potential impact of D614G on the virulence and epidemiology of SARS-CoV-2. In silico analyses on the spike protein structure suggests that the mutation is most likely neutral to protein function as it relates to its interaction with the human ACE2 receptor. The lack of clinical metadata available prevented our investigation of association between viral clade and disease severity phenotype. Future work that can leverage clinical outcome data with both viral and human genomic diversity is needed to monitor the pandemic.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/epidemiology , Evolution, Molecular , Pneumonia, Viral/epidemiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2 , Base Sequence , Betacoronavirus/pathogenicity , COVID-19 , Child , Child, Preschool , Computer Simulation , Coronavirus Infections/virology , Female , Genome, Viral/genetics , Humans , Infant , Male , Middle Aged , Mutation, Missense , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/virology , Protein Conformation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virulence/genetics , Young Adult
18.
J Clin Virol ; 128: 104433, 2020 07.
Article in English | MEDLINE | ID: covidwho-245515

ABSTRACT

With emergence of pandemic COVID-19, rapid and accurate diagnostic testing is essential. This study compared laboratory-developed tests (LDTs) used for the detection of SARS-CoV-2 in Canadian hospital and public health laboratories, and some commercially available real-time RT-PCR assays. Overall, analytical sensitivities were equivalent between LDTs and most commercially available methods.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Canada , Coronavirus Infections/virology , Humans , Laboratories , Limit of Detection , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL