Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 119(16): e2117142119, 2022 Apr 19.
Article in English | MEDLINE | ID: covidwho-1774040

ABSTRACT

SignificanceCOVID-19 is a deadly rampaging infectious disease with over 480 million cases worldwide. Unfortunately, effective therapies remain very limited. Novel antiviral agents are urgently needed to combat this global healthcare crisis. Here, we elucidate the structural basis for replicase polyprotein cleavage and substrate specificity of SARS-CoV-2 main protease (Mpro). Through analyzing a series of high-resolution structures of SARS-CoV-2 Mpro throughout the proteolytic process, we demonstrate the molecular mechanism of Mpro in proteolytic processing that confers substrate specificity. Substrate selectivity is revealed using structures of the H41A mutant in complex with six individual native cleavage substrates. Our study underscores the mechanistic function of Mpro in the viral life cycle, which provides structural insights to develop effective inhibitors against this essential target of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Endopeptidases , Humans , Peptide Hydrolases/genetics , Polyproteins/genetics , Protease Inhibitors/chemistry , SARS-CoV-2/genetics , Substrate Specificity
2.
Cell ; 184(1): 184-193.e10, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1385213

ABSTRACT

Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp82-nsp12-nsp132-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN, which then inhibits activity. We also show that nsp12 NiRAN possesses guanylyltransferase activity, catalyzing the formation of cap core structure (GpppA). The orientation of nsp13 that anchors the 5' extension of template RNA shows a remarkable conformational shift, resulting in zinc finger 3 of its ZBD inserting into a minor groove of paired template-primer RNA. These results reason an intermediate state of RTC toward mRNA synthesis, pave a way to understand the RTC architecture, and provide a target for antiviral development.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cryoelectron Microscopy , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Viral Replicase Complex Proteins/chemistry , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/enzymology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Methyltransferases/metabolism , Models, Molecular , RNA Helicases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/enzymology , Sequence Alignment , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication
3.
Cell ; 184(13): 3474-3485.e11, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1240208

ABSTRACT

The capping of mRNA and the proofreading play essential roles in SARS-CoV-2 replication and transcription. Here, we present the cryo-EM structure of the SARS-CoV-2 replication-transcription complex (RTC) in a form identified as Cap(0)-RTC, which couples a co-transcriptional capping complex (CCC) composed of nsp12 NiRAN, nsp9, the bifunctional nsp14 possessing an N-terminal exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and nsp10 as a cofactor of nsp14. Nsp9 and nsp12 NiRAN recruit nsp10/nsp14 into the Cap(0)-RTC, forming the N7-CCC to yield cap(0) (7MeGpppA) at 5' end of pre-mRNA. A dimeric form of Cap(0)-RTC observed by cryo-EM suggests an in trans backtracking mechanism for nsp14 ExoN to facilitate proofreading of the RNA in concert with polymerase nsp12. These results not only provide a structural basis for understanding co-transcriptional modification of SARS-CoV-2 mRNA but also shed light on how replication fidelity in SARS-CoV-2 is maintained.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/genetics , Exoribonucleases/genetics , Methyltransferases/genetics , SARS-CoV-2/genetics , Amino Acid Sequence , COVID-19/virology , Humans , RNA, Messenger/genetics , RNA, Viral/genetics , Sequence Alignment , Transcription, Genetic/genetics , Virus Replication/genetics
4.
Protein Cell ; 12(11): 877-888, 2021 11.
Article in English | MEDLINE | ID: covidwho-1188202

ABSTRACT

A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (Mpro), PLpro is responsible for processing the viral replicase polyprotein into functional units. Therefore, it is an attractive target for antiviral drug development. Here we discovered four compounds, YM155, cryptotanshinone, tanshinone I and GRL0617 that inhibit SARS-CoV-2 PLpro with IC50 values ranging from 1.39 to 5.63 µmol/L. These compounds also exhibit strong antiviral activities in cell-based assays. YM155, an anticancer drug candidate in clinical trials, has the most potent antiviral activity with an EC50 value of 170 nmol/L. In addition, we have determined the crystal structures of this enzyme and its complex with YM155, revealing a unique binding mode. YM155 simultaneously targets three "hot" spots on PLpro, including the substrate-binding pocket, the interferon stimulating gene product 15 (ISG15) binding site and zinc finger motif. Our results demonstrate the efficacy of this screening and repurposing strategy, which has led to the discovery of new drug leads with clinical potential for COVID-19 treatments.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , High-Throughput Screening Assays/methods , Protease Inhibitors/chemistry , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/therapeutic use , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Naphthoquinones/chemistry , Naphthoquinones/metabolism , Naphthoquinones/therapeutic use , Protease Inhibitors/metabolism , Protease Inhibitors/therapeutic use , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification
5.
Nature ; 582(7811): 289-293, 2020 06.
Article in English | MEDLINE | ID: covidwho-608904

ABSTRACT

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 µM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


Subject(s)
Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Drug Discovery/methods , Models, Molecular , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Cells, Cultured/virology , Coronavirus 3C Proteases , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Drug Design , Drug Evaluation, Preclinical , Humans , Pandemics , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , SARS-CoV-2
6.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Article in English | MEDLINE | ID: covidwho-342735

ABSTRACT

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Models, Chemical , Models, Molecular , RNA, Viral/metabolism , SARS-CoV-2 , Transcription, Genetic , Virus Replication
7.
Nat Struct Mol Biol ; 27(6): 529-532, 2020 06.
Article in English | MEDLINE | ID: covidwho-222247

ABSTRACT

The antineoplastic drug carmofur is shown to inhibit the SARS-CoV-2 main protease (Mpro). Here, the X-ray crystal structure of Mpro in complex with carmofur reveals that the carbonyl reactive group of carmofur is covalently bound to catalytic Cys145, whereas its fatty acid tail occupies the hydrophobic S2 subsite. Carmofur inhibits viral replication in cells (EC50 = 24.30 µM) and is a promising lead compound to develop new antiviral treatment for COVID-19.


Subject(s)
Betacoronavirus/enzymology , Cysteine Endopeptidases/chemistry , Fluorouracil/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Animals , Betacoronavirus/drug effects , COVID-19 , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Fluorouracil/chemistry , Fluorouracil/pharmacology , Models, Molecular , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
8.
Science ; 368(6492): 779-782, 2020 05 15.
Article in English | MEDLINE | ID: covidwho-47347

ABSTRACT

A novel coronavirus [severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)] outbreak has caused a global coronavirus disease 2019 (COVID-19) pandemic, resulting in tens of thousands of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase [(RdRp), also named nsp12] is the central component of coronaviral replication and transcription machinery, and it appears to be a primary target for the antiviral drug remdesivir. We report the cryo-electron microscopy structure of COVID-19 virus full-length nsp12 in complex with cofactors nsp7 and nsp8 at 2.9-angstrom resolution. In addition to the conserved architecture of the polymerase core of the viral polymerase family, nsp12 possesses a newly identified ß-hairpin domain at its N terminus. A comparative analysis model shows how remdesivir binds to this polymerase. The structure provides a basis for the design of new antiviral therapeutics that target viral RdRp.


Subject(s)
Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/ultrastructure , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/ultrastructure , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Drug Design , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Protein Conformation, beta-Strand , Protein Domains , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL