Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Eur J Nucl Med Mol Imaging ; 49(9): 3197-3202, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1756789

ABSTRACT

BACKGROUND: This multicentre study aimed to provide a qualitative and consensual description of brain hypometabolism observed through the visual analysis of 18F-FDG PET images of patients with suspected neurological long COVID, regarding the previously reported long-COVID hypometabolic pattern involving hypometabolism in the olfactory bulbs and other limbic/paralimbic regions, as well as in the brainstem and cerebellum. METHODS: From the beginning of August 2021 to the end of October 2021, the brain 18F-FDG PET scans of patients referred for suspected neurological long COVID with positive reverse transcription polymerase chain reaction (RT-PCR) and/or serology tests for SARS-CoV-2 infection were retrospectively reviewed in three French nuclear medicine departments (143 patients; 47.4 years old ± 13.6; 98 women). Experienced nuclear physicians from each department classified brain 18F-FDG PET scans according to the same visual interpretation analysis as being normal, mildly to moderately (or incompletely) affected, or otherwise severely affected within the previously reported long-COVID hypometabolic pattern. RESULTS: On the 143 brain 18F-FDG PET scans performed during this 3-month period, 53% of the scans were visually interpreted as normal, 21% as mildly to moderately or incompletely affected, and 26% as severely affected according to the COVID hypometabolic pattern. On average, PET scans were performed at 10.9 months from symptom onset (± 4.8). Importantly, this specific hypometabolic pattern was similarly identified in the three nuclear medicine departments. Typical illustrative examples are provided to help nuclear physicians interpret long-COVID profiles. CONCLUSION: The proposed PET metabolic pattern is easily identified upon visual interpretation in clinical routine for approximately one half of patients with suspected neurological long COVID, requiring special consideration for frontobasal paramedian regions, the brainstem and the cerebellum, and certainly further adapted follow-up and medical care, while the second half of patients have normal brain PET metabolism on average 10.9 months from symptom onset.


Subject(s)
COVID-19 , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Brain/metabolism , COVID-19/complications , COVID-19/diagnostic imaging , Female , Fluorodeoxyglucose F18/metabolism , Humans , Middle Aged , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Retrospective Studies , SARS-CoV-2
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317370

ABSTRACT

Purpose: Several weeks after COVID-19 infection, some children report the persistence or recurrence of functional complaints. This clinical presentation has been referred as “long COVID” in the adult population, and an 18 F-FDG brain PET hypometabolic pattern has recently been suggested as a biomarker. Herein, we present a retrospective analysis of 7 paediatric patients with suspected long COVID who were explored by 18 F-FDG brain PET exam. Metabolic brain findings were confronted to those obtained in adult patients with long COVID, in comparison to their respective age-matched control groups. Methods: . Review of clinical examination, and whole-brain voxel-based analysis of 18 F-FDG PET metabolism of the 7 children in comparison to 20 paediatric controls, 35 adult patients with long COVID and 44 healthy adult subjects. Results: . Paediatric patients demonstrated a similair brain hypometabolic pattern as that found in adult long COVID patients, involving bilateral medial temporal lobes, brainstem and cerebellum (p-voxel < 0.001, p-cluster < 0.05 FWE-corrected), and also the right olfactory gyrus after small volume correction (p-voxel = 0.010 FWE-corrected), with partial recovery in two children at follow-up. Conclusion: These results provide arguments in favour of possible long COVID in children, with a similar functional brain involvement to those found in adults .

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-291158

ABSTRACT

Purpose: Several brain complications of SARS-CoV-2 infection have been reported. It has been moreover speculated that this neurotropism could potentially cause a delayed outbreak of neuropsychiatric and neurodegenerative diseases of neuroinflammatory origin. A propagation mechanism has been proposed across the cribriform plate of the ethmoid bone, from the nose to the olfactory epithelium, and possibly afterwards to other limbic structures, and deeper parts of the brain including the brainstem. Methods: : Review of clinical examination, and whole-brain voxel-based analysis of 18 F-FDG PET metabolism in comparison to healthy subjects (p-voxel<0.001, p-cluster<0.05), of two patients with confirmed diagnosis of SARS-CoV-2 pneumonia explored at the post-viral stage of the disease. Results: : Hypometabolism of the olfactory/rectus gyrus was found on the two patients, especially one with 4 weeks prolonged anosmia. Additional hypometabolisms were found within bilateral amygdala, hippocampus, cingulate cortex, thalamus, pons and medulla brainstem in the other patient who complained of delayed onset of an atypical painful syndrome. Conclusion: These preliminary findings reinforce the hypotheses of SARS-CoV-2 neurotropism through the olfactory bulb, and the possible extension of this impairment to other limbic structures and to the brainstem. 18 F-FDG PET hypometabolism could constitute a cerebral quantitative biomarker of this involvement. Post-viral cohort studies are required to specify the exact relationship between limbic/brainstem hypometabolisms and the possible persistent disorders, especially involving cognitive or emotion disturbances, residual respiratory symptoms or painful complaints.

5.
Hum Brain Mapp ; 43(2): 593-597, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1460200

ABSTRACT

This study aims to evaluate the impact of French national lockdown of 55 days on brain metabolism of patients with neurological disorders. Whole-brain voxel-based PET analysis was used to correlate 18 F-FDG metabolism to the number of days after March 17, 2020 (in 95 patients; mean age: 54.3 years ± 15.7; 59 men), in comparison to the same period in 2019 before the SARS-CoV-2 outbreak (in 212 patients; mean age: 59.5 years ± 15.8; 114 men), and to the first 55 days of deconfinement (in 188 patients; mean age: 57.5 years ± 16.5; 93 men). Lockdown duration was negatively correlated to the metabolism of the sensory-motor cortex with a prevailing effect on the left dominant pyramidal tract and on younger patients, also including the left amygdala, with only partial reversibility after 55 days of deconfinement. Weak overlap was found with the reported pattern of hypometabolism in long COVID (<9%). Restriction of physical activities, and possible related deconditioning, and social isolation may lead to functional disturbances of sensorimotor and emotional brain networks. Of note, this metabolic pattern seems distinct to those reported in long COVID. Further longitudinal studies with longer follow-up are needed to evaluate clinical consequences and relationships on cognitive and mental health against functional deactivation hypothesis, and to extend these findings to healthy subjects in the context of lockdown.


Subject(s)
Brain/metabolism , COVID-19 , Pandemics , Quarantine , Aged , Aged, 80 and over , Brain/diagnostic imaging , COVID-19/complications , COVID-19/metabolism , Emotions , Exercise , Female , Fluorodeoxyglucose F18 , Humans , Longitudinal Studies , Male , Middle Aged , Motor Cortex/diagnostic imaging , Motor Cortex/metabolism , Nerve Net/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Retrospective Studies , Social Isolation , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/metabolism
7.
Eur J Nucl Med Mol Imaging ; 49(3): 913-920, 2022 02.
Article in English | MEDLINE | ID: covidwho-1366348

ABSTRACT

PURPOSE: Several weeks after COVID-19 infection, some children report the persistence or recurrence of functional complaints. This clinical presentation has been referred as "long COVID" in the adult population, and an [18F]-FDG brain PET hypometabolic pattern has recently been suggested as a biomarker. Herein, we present a retrospective analysis of 7 paediatric patients with suspected long COVID who were explored by [18F]-FDG brain PET exam. Metabolic brain findings were confronted to those obtained in adult patients with long COVID, in comparison to their respective age-matched control groups. METHODS: Review of clinical examination and whole-brain voxel-based analysis of [18F]-FDG PET metabolism of the 7 children in comparison to 21 paediatric controls, 35 adult patients with long COVID and 44 healthy adult subjects. RESULTS: Despite lower initial severity at the acute stage of the infection, paediatric patients demonstrated on average 5 months later a similar brain hypometabolic pattern as that found in adult long COVID patients, involving bilateral medial temporal lobes, brainstem and cerebellum (p-voxel < 0.001, p-cluster < 0.05 FWE-corrected), and also the right olfactory gyrus after small volume correction (p-voxel = 0.010 FWE-corrected), with partial PET recovery in two children at follow-up. CONCLUSION: These results provide arguments in favour of possible long COVID in children, with a similar functional brain involvement to those found in adults, regardless of age and initial severity.


Subject(s)
COVID-19 , Brain/diagnostic imaging , COVID-19/complications , Child , Fluorodeoxyglucose F18 , Humans , Positron-Emission Tomography , Retrospective Studies , SARS-CoV-2
10.
J Nucl Med ; 61(12): 1726-1729, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-993173

ABSTRACT

We report the case of a 72-y-old man with concomitant autoimmune encephalitis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The patient presented with subacute cerebellar syndrome and myoclonus several days after general infectious symptoms began. Methods: Clinical examination, CT, PET, MRI, and autoantibody testing were performed. Results: The oropharyngeal swab test was positive for SARS-CoV-2. The brain MRI results were normal. Cerebrospinal fluid testing showed normal cell counts, a negative result on reverse-transcription polymerase chain reaction testing, and no oligoclonal banding. Brain 18F-FDG PET showed diffuse cortical hypometabolism associated with putaminal and cerebellum hypermetabolism, compatible with encephalitis and especially cerebellitis. The immunologic study revealed high titers of IgG autoantibodies in serum and cerebrospinal fluid directed against the nuclei of Purkinje cells, striatal neurons, and hippocampal neurons. Whole-body 18F-FDG PET and CT scans did not show neoplasia. Treatment with steroids allowed a rapid improvement in symptoms. Conclusion: This clinical case argues for a possible relationship between SARS-CoV-2 infection and autoimmune encephalitis and for the use of 18F-FDG PET in such a context.


Subject(s)
Autoantibodies/metabolism , COVID-19/complications , COVID-19/diagnostic imaging , Encephalitis/complications , Fluorodeoxyglucose F18 , Hashimoto Disease/complications , Neurons/immunology , Positron-Emission Tomography , Aged , COVID-19/immunology , COVID-19/therapy , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL