Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ann Intensive Care ; 11(1): 113, 2021 Jul 17.
Article in English | MEDLINE | ID: covidwho-1315865

ABSTRACT

BACKGROUND: Microvascular, arterial and venous thrombotic events have been largely described during severe coronavirus disease 19 (COVID-19). However, mechanisms underlying hemostasis dysregulation remain unclear. METHODS: We explored two independent cross-sectional cohorts to identify soluble markers and gene-expression signatures that discriminated COVID-19 severity and outcomes. RESULTS: We found that elevated soluble (s)P-selectin at admission was associated with disease severity. Elevated sP-selectin was predictive of intubation and death (ROC AUC = 0.67, p = 0.028 and AUC = 0.74, p = 0.0047, respectively). An optimal cutoff value was predictive of intubation with 66% negative predictive value (NPV) and 61% positive predictive value (PPV), and of death with 90% NPV and 55% PPV. An unbiased gene set enrichment analysis revealed that critically ill patients had increased expression of genes related to platelet activation. Hierarchical clustering identified ITG2AB, GP1BB, PPBP and SELPLG to be upregulated in a grade-dependent manner. ROC curve analysis for the prediction of intubation was significant for SELPLG and PPBP (AUC = 0.8, p = 0.046 for both). An optimal cutoff value for PBPP was predictive of intubation with 100% NPV and 45% PPV, and for SELPLG with 100% NPV and 50% PPV. CONCLUSION: We provide evidence that platelets contribute to COVID-19 severity. Plasma sP-selectin level was associated with severity and in-hospital mortality. Transcriptional analysis identified PPBP/CXCL7 and SELPLG as biomarkers for intubation. These findings provide additional evidence for platelet activation in driving critical COVID-19. Specific studies evaluating the performance of these biomarkers are required.

2.
J Thromb Haemost ; 19(7): 1823-1830, 2021 07.
Article in English | MEDLINE | ID: covidwho-1172713

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with vascular inflammation and endothelial injury. OBJECTIVES: To correlate circulating angiogenic markers vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), and fibroblast growth factor 2 (FGF-2) to in-hospital mortality in COVID-19 adult patients. METHODS: Consecutive ambulatory and hospitalized patients with COVID-19 infection were enrolled. VEGF-A, PlGF, and FGF-2 were measured in each patient ≤48 h following admission. RESULTS: The study enrolled 237 patients with suspected COVID-19: 208 patients had a positive diagnostic for COVID-19, of whom 23 were mild outpatients and 185 patients hospitalized after admission. Levels of VEGF-A, PlGF, and FGF-2 significantly increase with the severity of the disease (P < .001). Using a logistic regression model, we found a significant association between the increase of FGF-2 or PlGF and mortality (odds ratio [OR] 1.11, 95% confidence interval [CI; 1.07-1.16], P < .001 for FGF-2 and OR 1.07 95% CI [1.04-1.10], P < .001 for PlGF) while no association were found for VEGF-A levels. Receiver operating characteristic curve analysis was performed and we identified PlGF above 30 pg/ml as the best predictor of in-hospital mortality in COVID-19 patients. Survival analysis for PlGF confirmed its interest for in-hospital mortality prediction, by using a Kaplan-Meier survival curve (P = .001) and a Cox proportional hazard model adjusted to age, body mass index, D-dimer, and C-reactive protein (3.23 95% CI [1.29-8.11], P = .001). CONCLUSION: Angiogenic factor PlGF is a relevant predictive factor for in-hospital mortality in COVID-19 patients. More than a biomarker, we hypothesize that PlGF blocking strategies could be a new interesting therapeutic approach in COVID-19.


Subject(s)
COVID-19 , Vascular Endothelial Growth Factor A , Adult , Biomarkers , Female , Hospital Mortality , Humans , Placenta Growth Factor , SARS-CoV-2
3.
Angiogenesis ; 24(3): 505-517, 2021 08.
Article in English | MEDLINE | ID: covidwho-1032491

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with endotheliitis and microthrombosis. OBJECTIVES: To correlate endothelial dysfunction to in-hospital mortality in a bi-centric cohort of COVID-19 adult patients. METHODS: Consecutive ambulatory and hospitalized patients with laboratory-confirmed COVID-19 were enrolled. A panel of endothelial biomarkers and von Willebrand factor (VWF) multimers were measured in each patient ≤ 48 h following admission. RESULTS: Study enrolled 208 COVID-19 patients of whom 23 were mild outpatients and 189 patients hospitalized after admission. Most of endothelial biomarkers tested were found increased in the 89 critical patients transferred to intensive care unit. However, only von Willebrand factor antigen (VWF:Ag) scaled according to clinical severity, with levels significantly higher in critical patients (median 507%, IQR 428-596) compared to non-critical patients (288%, 230-350, p < 0.0001) or COVID-19 outpatients (144%, 133-198, p = 0.007). Moreover, VWF high molecular weight multimers (HMWM) were significantly higher in critical patients (median ratio 1.18, IQR 0.86-1.09) compared to non-critical patients (0.96, 1.04-1.39, p < 0.001). Among all endothelial biomarkers measured, ROC curve analysis identified a VWF:Ag cut-off of 423% as the best predictor for in-hospital mortality. The accuracy of VWF:Ag was further confirmed in a Kaplan-Meier estimator analysis and a Cox proportional Hazard model adjusted on age, BMI, C-reactive protein and D-dimer levels. CONCLUSION: VWF:Ag is a relevant predictive factor for in-hospital mortality in COVID-19 patients. More than a biomarker, we hypothesize that VWF, including excess of HMWM forms, drives microthrombosis in COVID-19.


Subject(s)
COVID-19/blood , COVID-19/mortality , Pandemics , SARS-CoV-2 , von Willebrand Factor/metabolism , Adult , Aged , Biomarkers/blood , Biomarkers/chemistry , COVID-19/physiopathology , Cross-Sectional Studies , Endothelium, Vascular/physiopathology , Female , Hospital Mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Molecular Weight , Paris/epidemiology , Proportional Hazards Models , Protein Multimerization , Severity of Illness Index , Thrombosis/blood , Thrombosis/etiology , von Willebrand Factor/chemistry
4.
Stem Cell Rev Rep ; 17(2): 639-651, 2021 04.
Article in English | MEDLINE | ID: covidwho-932630

ABSTRACT

Endothelial progenitor cells (EPCs) are involved in vasculogenesis and cardiovascular diseases. However, the phenotype of circulating EPCs remains elusive but they are more often described as CD34+KDR+. The aim of the study was to extensively characterize circulating potential vasculogenic stem cell candidates in two populations of patients with cardiovascular disease by powerful multidimensional single cell complementary cytometric approaches (mass, imaging and flow). We identified cellular candidates in one patient before and after bioprosthetic total artificial heart implantation and results were confirmed in healthy peripheral and cord blood by mass cytometry. We also quantified cellular candidates in 10 patients with different COVID-19 severity. Both C-TAH implantation and COVID-19 at critical stage induce a redistribution of circulating CD34+ and CD19+ sub-populations in peripheral blood. After C-TAH implantation, circulating CD34+ progenitor cells expressed c-Kit stem marker while specific subsets CD34+CD133-/+CD45-/dimc-Kit+KDR- were mobilized. KDR was only expressed by CD19+ B-lymphocytes and CD14+ monocytes subpopulations in circulation. We confirmed by mass cytometry this KDR expression on CD19+ in healthy peripheral and cord blood, also with a VE-cadherin expression, confirming absence of endothelial lineage marker on CD34+ subtypes. In COVID-19, a significant mobilization of CD34+c-Kit+KDR- cells was observed between moderate and critical COVID-19 patients regardless CD133 or CD45 expression. In order to better evaluate EPC phenotype, we performed imaging flow cytometry measurements of immature CD34+KDR+ cells in cord blood and showed that, after elimination of non-circular events, those cells were all CD19+. During COVID-19, a significant mobilization of CD19+KDR+ per million of CD45+ cells was observed between moderate and critical COVID-19 patients regardless of CD34 expression. CD34+c-Kit+ cells are mobilized in both cardiovascular disease described here. KDR cells in peripheral blood are CD19 positive cells and are not classic vasculogenic stem and/or progenitor cells. A better evaluation of c-Kit and KDR expressing cells will lead to the redefinition of circulating endothelial progenitors.Graphical abstract Central illustration figure. Multidimensional proteomic approach of endothelial progenitors demonstrate expression of KDR restricted to CD19 cells. Endothelial progenitor cells (EPCs) are involved in cardiovascular diseases, however their phenotype remains elusive. We elucidated here EPCs phenotype by a deep characterization by multidimensional single cell complementary cytometric approaches after Bioprosthetic total artificial heart implantation and during COVID-19. We showed a redistribution of circulating CD34+ and CD19+ sub-populations in both situations. None of the immature cell population expresses KDR. Mobilized CD34+ expressed c-Kit. Imaging flow cytometry demonstrated that CD34+KDR+ cells, after elimination of non-circular events, are all CD19+. Our results suggest a new definition of circulating EPCs and emphasize involvement of CD19 cells in cardiovascular disease.


Subject(s)
Antigens, CD19/metabolism , COVID-19/metabolism , Endothelial Progenitor Cells/metabolism , Gene Expression Regulation , Heart, Artificial , SARS-CoV-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Endothelial Progenitor Cells/pathology , Female , Humans , Male , Middle Aged , Proteomics
5.
Angiogenesis ; 23(4): 611-620, 2020 11.
Article in English | MEDLINE | ID: covidwho-377964

ABSTRACT

BACKGROUND: Coronavirus disease-2019 (COVID-19), a respiratory disease has been associated with ischemic complications, coagulation disorders, and an endotheliitis. OBJECTIVES: To explore endothelial damage and activation-related biomarkers in COVID-19 patients with criteria of hospitalization for referral to intensive care unit (ICU) and/or respiratory worsening. METHODS: Analysis of endothelial and angiogenic soluble markers in plasma from patients at admission. RESULTS: Study enrolled 40 consecutive COVID-19 patients admitted to emergency department that fulfilled criteria for hospitalization. Half of them were admitted in conventional wards without any ICU transfer during hospitalization; whereas the 20 others were directly transferred to ICU. Patients transferred in ICU were more likely to have lymphopenia, decreased SpO2 and increased D-dimer, CRP and creatinine levels. In those patients, soluble E-selectin and angiopoietin-2 were significantly increased (p value at 0.009 and 0.003, respectively). Increase in SELE gene expression (gene coding for E-selectin protein) was confirmed in an independent cohort of 32 patients using a whole blood gene expression profile analysis. In plasma, we found a strong association between angiopoetin-2 and CRP, creatinine and D-dimers (with p value at 0.001, 0.001 and 0.003, respectively). ROC curve analysis identified an Angiopoietin-2 cut-off of 5000 pg/mL as the best predictor for ICU outcome (Se = 80.1%, Sp = 70%, PPV = 72.7%, NPV = 77%), further confirmed in multivariate analysis after adjustment for creatinine, CRP or D-dimers. CONCLUSION: Angiopoietin-2 is a relevant predictive factor for ICU direct admission in COVID-19 patients. This result showing an endothelial activation reinforces the hypothesis of a COVID-19-associated microvascular dysfunction.


Subject(s)
Angiopoietin-2/blood , Coronavirus Infections/blood , Coronavirus Infections/therapy , Endothelium, Vascular/metabolism , Intensive Care Units , Pneumonia, Viral/blood , Pneumonia, Viral/therapy , Aged , Betacoronavirus , Biomarkers/blood , COVID-19 , Critical Care/methods , E-Selectin/blood , Female , Gene Expression Profiling , Hospitalization , Humans , Male , Middle Aged , Pandemics , Patient Admission , Prospective Studies , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL