Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Methods Programs Biomed ; 226: 107109, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2117158

ABSTRACT

BACKGROUND AND OBJECTIVE: COVID-19 outbreak has become one of the most challenging problems for human being. It is a communicable disease caused by a new coronavirus strain, which infected over 375 million people already and caused almost 6 million deaths. This paper aims to develop and design a framework for early diagnosis and fast classification of COVID-19 symptoms using multimodal Deep Learning techniques. METHODS: we collected chest X-ray and cough sample data from open source datasets, Cohen and datasets and local hospitals. The features are extracted from the chest X-ray images are extracted from chest X-ray datasets. We also used cough audio datasets from Coswara project and local hospitals. The publicly available Coughvid DetectNow and Virufy datasets are used to evaluate COVID-19 detection based on speech sounds, respiratory, and cough. The collected audio data comprises slow and fast breathing, shallow and deep coughing, spoken digits, and phonation of sustained vowels. Gender, geographical location, age, preexisting medical conditions, and current health status (COVID-19 and Non-COVID-19) are recorded. RESULTS: The proposed framework uses the selection algorithm of the pre-trained network to determine the best fusion model characterized by the pre-trained chest X-ray and cough models. Third, deep chest X-ray fusion by discriminant correlation analysis is used to fuse discriminatory features from the two models. The proposed framework achieved recognition accuracy, specificity, and sensitivity of 98.91%, 96.25%, and 97.69%, respectively. With the fusion method we obtained 94.99% accuracy. CONCLUSION: This paper examines the effectiveness of well-known ML architectures on a joint collection of chest-X-rays and cough samples for early classification of COVID-19. It shows that existing methods can effectively used for diagnosis and suggesting that the fusion learning paradigm could be a crucial asset in diagnosing future unknown illnesses. The proposed framework supports health informatics basis on early diagnosis, clinical decision support, and accurate prediction.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/diagnostic imaging , X-Rays , SARS-CoV-2 , Speech , Cough/diagnostic imaging , Early Diagnosis
2.
IEEE Trans Netw Sci Eng ; 9(1): 332-344, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1621805

ABSTRACT

The COVID-19 pandemic has caused serious consequences in the last few months and trying to control it has been the most important objective. With effective prevention and control methods, the epidemic has been gradually under control in some countries and it is essential to ensure safe work resumption in the future. Although some approaches are proposed to measure people's healthy conditions, such as filling health information forms or evaluating people's travel records, they cannot provide a fine-grained assessment of the epidemic risk. In this paper, we propose a novel epidemic risk assessment method based on the granular data collected by the communication stations. We first compute the epidemic risk of these stations in different intervals by combining the number of infected persons and the way they pass through the station. Then, we calculate the personnel risk in different intervals according to the station trajectory of the queried person. This method could assess people's epidemic risk accurately and efficiently. We also conduct extensive simulations and the results verify the effectiveness of the proposed method.

3.
IEEE Access ; 8: 171575-171589, 2020.
Article in English | MEDLINE | ID: covidwho-1607618

ABSTRACT

With the exponentially growing COVID-19 (coronavirus disease 2019) pandemic, clinicians continue to seek accurate and rapid diagnosis methods in addition to virus and antibody testing modalities. Because radiographs such as X-rays and computed tomography (CT) scans are cost-effective and widely available at public health facilities, hospital emergency rooms (ERs), and even at rural clinics, they could be used for rapid detection of possible COVID-19-induced lung infections. Therefore, toward automating the COVID-19 detection, in this paper, we propose a viable and efficient deep learning-based chest radiograph classification (DL-CRC) framework to distinguish the COVID-19 cases with high accuracy from other abnormal (e.g., pneumonia) and normal cases. A unique dataset is prepared from four publicly available sources containing the posteroanterior (PA) chest view of X-ray data for COVID-19, pneumonia, and normal cases. Our proposed DL-CRC framework leverages a data augmentation of radiograph images (DARI) algorithm for the COVID-19 data by adaptively employing the generative adversarial network (GAN) and generic data augmentation methods to generate synthetic COVID-19 infected chest X-ray images to train a robust model. The training data consisting of actual and synthetic chest X-ray images are fed into our customized convolutional neural network (CNN) model in DL-CRC, which achieves COVID-19 detection accuracy of 93.94% compared to 54.55% for the scenario without data augmentation (i.e., when only a few actual COVID-19 chest X-ray image samples are available in the original dataset). Furthermore, we justify our customized CNN model by extensively comparing it with widely adopted CNN architectures in the literature, namely ResNet, Inception-ResNet v2, and DenseNet that represent depth-based, multi-path-based, and hybrid CNN paradigms. The encouragingly high classification accuracy of our proposal implies that it can efficiently automate COVID-19 detection from radiograph images to provide a fast and reliable evidence of COVID-19 infection in the lung that can complement existing COVID-19 diagnostics modalities.

4.
IEEE Internet Things J ; 8(21): 16047-16071, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1570208

ABSTRACT

This article provides a literature review of state-of-the-art machine learning (ML) algorithms for disaster and pandemic management. Most nations are concerned about disasters and pandemics, which, in general, are highly unlikely events. To date, various technologies, such as IoT, object sensing, UAV, 5G, and cellular networks, smartphone-based system, and satellite-based systems have been used for disaster and pandemic management. ML algorithms can handle multidimensional, large volumes of data that occur naturally in environments related to disaster and pandemic management and are particularly well suited for important related tasks, such as recognition and classification. ML algorithms are useful for predicting disasters and assisting in disaster management tasks, such as determining crowd evacuation routes, analyzing social media posts, and handling the post-disaster situation. ML algorithms also find great application in pandemic management scenarios, such as predicting pandemics, monitoring pandemic spread, disease diagnosis, etc. This article first presents a tutorial on ML algorithms. It then presents a detailed review of several ML algorithms and how we can combine these algorithms with other technologies to address disaster and pandemic management. It also discusses various challenges, open issues and, directions for future research.

5.
IEEE Access ; 9: 51106-51120, 2021.
Article in English | MEDLINE | ID: covidwho-1183118

ABSTRACT

The wide spread of the novel COVID-19 virus all over the world has caused major economical and social damages combined with the death of more than two million people so far around the globe. Therefore, the design of a model that can predict the persons that are most likely to be infected is a necessity to control the spread of this infectious disease as well as any other future novel pandemic. In this paper, an Internet of Things (IoT) sensing network is designed to anonymously track the movement of individuals in crowded zones through collecting the beacons of WiFi and Bluetooth devices from mobile phones to triangulate and estimate the locations of individuals inside buildings without violating their privacy. A mathematical model is presented to compute the expected time of exposure between users. Furthermore, a virus spread mathematical model as well as iterative spread tracking algorithms are proposed to predict the probability of individuals being infected even with limited data.

6.
IEEE J Biomed Health Inform ; 24(10): 2765-2775, 2020 10.
Article in English | MEDLINE | ID: covidwho-695844

ABSTRACT

The emergence of novel COVID-19 is causing an overload on public health sector and a high fatality rate. The key priority is to contain the epidemic and reduce the infection rate. It is imperative to stress on ensuring extreme social distancing of the entire population and hence slowing down the epidemic spread. So, there is a need for an efficient optimizer algorithm that can solve NP-hard in addition to applied optimization problems. This article first proposes a novel COVID-19 optimizer Algorithm (CVA) to cover almost all feasible regions of the optimization problems. We also simulate the coronavirus distribution process in several countries around the globe. Then, we model a coronavirus distribution process as an optimization problem to minimize the number of COVID-19 infected countries and hence slow down the epidemic spread. Furthermore, we propose three scenarios to solve the optimization problem using most effective factors in the distribution process. Simulation results show one of the controlling scenarios outperforms the others. Extensive simulations using several optimization schemes show that the CVA technique performs best with up to 15%, 37%, 53% and 59% increase compared with Volcano Eruption Algorithm (VEA), Gray Wolf Optimizer (GWO), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), respectively.


Subject(s)
Algorithms , Betacoronavirus , Coronavirus Infections/prevention & control , Models, Biological , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Computational Biology , Computer Simulation , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL