Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Clin Microbiol ; 60(1): e0174221, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1629698

ABSTRACT

Point-of-care antigen tests are an important tool for SARS-CoV-2 detection. Antigen tests are less sensitive than real-time reverse transcriptase PCR (rRT-PCR). Data on the performance of the BinaxNOW antigen test compared to rRT-PCR and viral culture by symptom and known exposure status, timing during disease, or exposure period and demographic variables are limited. During 3 to 17 November 2020, we collected paired upper respiratory swab specimens to test for SARS-CoV-2 by rRT-PCR and Abbott BinaxNOW antigen test at two community testing sites in Pima County, Arizona. We administered a questionnaire to capture symptoms, known exposure status, and previous SARS-CoV-2 test results. Specimens positive by either test were analyzed by viral culture. Previously we showed overall BinaxNOW sensitivity was 52.5%. Here, we showed BinaxNOW sensitivity increased to 65.7% among currently symptomatic individuals reporting a known exposure. BinaxNOW sensitivity was lower among participants with a known exposure and previously symptomatic (32.4%) or never symptomatic (47.1%) within 14 days of testing. Sensitivity was 71.1% in participants within a week of symptom onset. In participants with a known exposure, sensitivity was highest 8 to 10 days postexposure (75%). The positive predictive value for recovery of virus in cell culture was 56.7% for BinaxNOW-positive and 35.4% for rRT-PCR-positive specimens. Result reporting time was 2.5 h for BinaxNOW and 26 h for rRT-PCR. Point-of-care antigen tests have a shorter turnaround time than laboratory-based nucleic acid amplification tests, which allows for more rapid identification of infected individuals. Antigen test sensitivity limitations are important to consider when developing a testing program.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
2.
Am J Public Health ; 111(5): 907-916, 2021 05.
Article in English | MEDLINE | ID: covidwho-1177867

ABSTRACT

Objectives. To assess SARS-CoV-2 transmission within a correctional facility and recommend mitigation strategies.Methods. From April 29 to May 15, 2020, we established the point prevalence of COVID-19 among incarcerated persons and staff within a correctional facility in Arkansas. Participants provided respiratory specimens for SARS-CoV-2 testing and completed questionnaires on symptoms and factors associated with transmission.Results. Of 1647 incarcerated persons and 128 staff tested, 30.5% of incarcerated persons (range by housing unit = 0.0%-58.2%) and 2.3% of staff tested positive for SARS-CoV-2. Among those who tested positive and responded to symptom questions (431 incarcerated persons, 3 staff), 81.2% and 33.3% were asymptomatic, respectively. Most incarcerated persons (58.0%) reported wearing cloth face coverings 8 hours or less per day, and 63.3% reported close contact with someone other than their bunkmate.Conclusions. If testing remained limited to symptomatic individuals, fewer cases would have been detected or detection would have been delayed, allowing transmission to continue. Rapid implementation of mass testing and strict enforcement of infection prevention and control measures may be needed to mitigate spread of SARS-CoV-2 in this setting.


Subject(s)
COVID-19 Testing , COVID-19 , Correctional Facilities/statistics & numerical data , Adult , Aged , Aged, 80 and over , Arkansas/epidemiology , COVID-19/epidemiology , COVID-19/transmission , Housing/statistics & numerical data , Humans , Male , Middle Aged , Prevalence , Prisoners/statistics & numerical data , Surveys and Questionnaires
3.
MMWR Morb Mortal Wkly Rep ; 70(3): 100-105, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1040195

ABSTRACT

Rapid antigen tests, such as the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW), offer results more rapidly (approximately 15-30 minutes) and at a lower cost than do highly sensitive nucleic acid amplification tests (NAATs) (1). Rapid antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in symptomatic persons (2), but data are lacking on test performance in asymptomatic persons to inform expanded screening testing to rapidly identify and isolate infected persons (3). To evaluate the performance of the BinaxNOW rapid antigen test, it was used along with real-time reverse transcription-polymerase chain reaction (RT-PCR) testing to analyze 3,419 paired specimens collected from persons aged ≥10 years at two community testing sites in Pima County, Arizona, during November 3-17, 2020. Viral culture was performed on 274 of 303 residual real-time RT-PCR specimens with positive results by either test (29 were not available for culture). Compared with real-time RT-PCR testing, the BinaxNOW antigen test had a sensitivity of 64.2% for specimens from symptomatic persons and 35.8% for specimens from asymptomatic persons, with near 100% specificity in specimens from both groups. Virus was cultured from 96 of 274 (35.0%) specimens, including 85 (57.8%) of 147 with concordant antigen and real-time RT-PCR positive results, 11 (8.9%) of 124 with false-negative antigen test results, and none of three with false-positive antigen test results. Among specimens positive for viral culture, sensitivity was 92.6% for symptomatic and 78.6% for asymptomatic individuals. When the pretest probability for receiving positive test results for SARS-CoV-2 is elevated (e.g., in symptomatic persons or in persons with a known COVID-19 exposure), a negative antigen test result should be confirmed by NAAT (1). Despite a lower sensitivity to detect infection, rapid antigen tests can be an important tool for screening because of their quick turnaround time, lower costs and resource needs, high specificity, and high positive predictive value (PPV) in settings of high pretest probability. The faster turnaround time of the antigen test can help limit transmission by more rapidly identifying infectious persons for isolation, particularly when used as a component of serial testing strategies.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Community Health Services , Adolescent , Adult , Aged , Aged, 80 and over , Arizona/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Child , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Time Factors , Young Adult
4.
MMWR Morb Mortal Wkly Rep ; 69(31): 1026-1030, 2020 Aug 07.
Article in English | MEDLINE | ID: covidwho-694883

ABSTRACT

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is spread from person to person (1-3). Quarantine of exposed persons (contacts) for 14 days following their exposure reduces transmission (4-7). Contact tracing provides an opportunity to identify contacts, inform them of quarantine recommendations, and monitor their symptoms to promptly identify secondary COVID-19 cases (7,8). On March 12, 2020, Maine Center for Disease Control and Prevention (Maine CDC) identified the first case of COVID-19 in the state. Because of resource constraints, including staffing, Maine CDC could not consistently monitor contacts, and automated technological solutions for monitoring contacts were explored. On May 14, 2020, Maine CDC began enrolling contacts of patients with reported COVID-19 into Sara Alert (MITRE Corporation, 2020),* an automated, web-based, symptom monitoring tool. After initial communication with Maine CDC staff members, enrolled contacts automatically received daily symptom questionnaires via their choice of e-mailed weblink, text message, texted weblink, or telephone call until completion of their quarantine. Epidemiologic investigations were conducted for enrollees who reported symptoms or received a positive SARS-CoV-2 test result. During May 14-June 26, Maine CDC enrolled 1,622 contacts of 614 COVID-19 patients; 190 (11.7%) eventually developed COVID-19, highlighting the importance of identifying, quarantining, and monitoring contacts of COVID-19 patients to limit spread. In Maine, symptom monitoring was not feasible without the use of an automated symptom monitoring tool. Using a tool that permitted enrollees to specify a method of symptom monitoring was well received, because the majority of persons monitored (96.4%) agreed to report using this system.


Subject(s)
Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Epidemiological Monitoring , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Adolescent , Adult , Aged , Aged, 80 and over , Automation , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Humans , Infant , Infant, Newborn , Maine/epidemiology , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Program Evaluation , Symptom Assessment/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL