Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Surg Infect (Larchmt) ; 23(3): 298-303, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1830953

ABSTRACT

Background: Maxillofacial soft tissue injuries (STIs) are common and frequent in emergency departments. The aim of this study was to analyze factors causing infection of maxillofacial STIs. Patients and Methods: Patients with maxillofacial STIs who received sutures and had complete medical records were evaluated. Gender, age, American Society of Anesthesiologists (ASA) grade, diabetes mellitus, wound age, wound length, wound contamination, wound type, and sites were analyzed using univariable analysis and binary logistic regression. Results: There were 3,276 cases included. In the univariable analysis, there was no significant difference in the infection rate between genders or between the wound age groups. In binary logistic regression, age, wound length, wound type, and physician level were risk factors for infection: age of 18-44 years (odds ratio [OR], 2.2; 95% confidence interval [CI], 1.7-2.9), 44-64 years (OR, 3.1; 95% CI, 2.3-4.3), and ≥65 years (OR, 2.6; 95% CI, 1.7-4.1); wound length of 4-8 cm (OR, 1.7; 95% CI, 1.3-2.2) and >8 cm (OR, 2.4; 95% CI, 1.1-5.1); intra-oral wounds (OR, 1.6; 95% CI, 1.1-2.4) and communicating wounds (OR, 3.2; 95% CI, 2.3-4.4); junior specialists (OR, 1.6; 95% CI, 1.2-2.2); and lip (OR, 3.7; 95% CI, 1.1-12.0) and cheek (OR, 4.7; 95% CI, 2.3-17.1) sites. Wound contamination, ASA grade, and diabetes mellitus were not significantly different from wound infection in binary regression analysis. Conclusions: Age (>18 years old), wound length (>4 cm), intra-oral wounds, communicating wounds, suturing by junior surgeons, and lip or cheek injuries may be risk factors for maxillofacial STI infection. Even if the penetrating wound age exceeds 24 hours, it is meaningful to suture if there is no serious infection. For wounds at high risk of infection, further measures should be considered to reduce the possibility of infection, such as improving the surgical training of junior surgeons and improving the patient's wound care.


Subject(s)
Facial Injuries , Soft Tissue Injuries , Wound Infection , Adolescent , Adult , Facial Injuries/epidemiology , Facial Injuries/surgery , Female , Humans , Male , Risk Factors , Soft Tissue Injuries/epidemiology , Soft Tissue Injuries/etiology , Soft Tissue Injuries/surgery , Sutures , Wound Infection/etiology , Young Adult
2.
Nat Rev Microbiol ; 20(5): 315, 2022 May.
Article in English | MEDLINE | ID: covidwho-1705646
3.
Int J Infect Dis ; 116: 258-267, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1693397

ABSTRACT

OBJECTIVE: The mortality rate for critically ill COVID-19 cases was more than 80%. Nonetheless, research about the effect of common respiratory diseases on critically ill COVID-19 expression and outcomes is scarce. DESIGN: We performed proteomic analyses on airway mucus obtained by bronchoscopy from patients with severe COVID-19, or induced sputum from patients with chronic obstructive pulmonary disease (COPD), asthma, and healthy controls. RESULTS: Of the total identified and quantified proteins, 445 differentially expressed proteins (DEPs) were found in different comparison groups. In comparison with COPD, asthma, and controls, 11 proteins were uniquely present in COVID-19 patients. Apart from DEPs associated with COPD versus controls and asthma versus controls, there was a total of 59 DEPs specific to COVID-19 patients. Finally, the findings revealed that there were 8 overlapping proteins in COVID-19 patients, including C9, FGB, FGG, PRTN3, HBB, HBA1, IGLV3-19, and COTL1. Functional analyses revealed that most of them were associated with complement and coagulation cascades, platelet activation, or iron metabolism, and anemia-related pathways. CONCLUSIONS: This study provides fundamental data for identifying COVID-19-specific proteomic changes in comparison with COPD and asthma, which may suggest molecular targets for specialized therapy.


Subject(s)
Asthma , COVID-19 , Pulmonary Disease, Chronic Obstructive , Critical Illness , Humans , Microfilament Proteins/metabolism , Proteomics , SARS-CoV-2 , Sputum
4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325217

ABSTRACT

Objectives: The pandemic of the coronavirus disease 2019 (COVID-19) continuously poses a serious threat to public health, highlighting an urgent need for simple and efficient early detection and prediction. Methods: : We comprehensively investigated and reanalyzed the published indexes and models for predicting severe illness among COVID‑19 patients in our dataset, and validated them on an independent dataset. Results: : 696 COVID-19 cases in the discovery stage and 337 patients in the validation stage were involved. The AuROC of neutrophil to lymphocyte ratio (NLR) (0.782) was significantly higher than that of the other 11 independent risk indexes in severe outcome prediction. The combination of NLR and oxygen saturation (SaO 2 ) (NLR+SaO 2 ) showed the biggest AuROC calculations with a value of 0.901;with a cut-off value of 0.532, it exhibited 84.2% sensitivity, 88.4% specificity and 86.8% correct classification ratio. Moreover, we first identified that principal component analysis (PCA) is an effective tool to predict the severity of COVID-19. We obtained 86.5% prediction accuracy with 86% sensitivity when PCA was applied to predict severe illness. In addition, to evaluate the performance of NLR+SaO 2 and PCA, we compared them with currently published predictive models in the same dataset. Conclusions: : It showed that NLR+SaO 2 is an appropriate and promising method for predicting severe illness, followed by PCA. We then validated the results on an independent dataset and revealed that they remained robust accuracy in outcome prediction. This study is significant for early treatment, intervention, triage and saving limited resources.

5.
Am J Reprod Immunol ; : e13528, 2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1685180

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new type of coronavirus that has caused fatal infectious diseases and global spread. This novel coronavirus attacks target cells through the interaction of spike protein and angiotensin-converting enzyme II (ACE2), leading to different clinical symptoms. However, for a successful pregnancy, a well-established in-uterine environment includes a specific immune environment, and multi-interactions between specific cell types are prerequisites. The immune-related changes in patients infected with novel coronavirus could interfere with the immune microenvironment in the uterus, leading to fetal loss. We first reviewed the intrauterine environment in the normal development process and the possible pregnancy outcome in the infection state. Then, we summarized the immune response induced by SARS-CoV-2 in patients and analyzed the changes in ACE2 expression in the female reproductive system. Finally, the present observational evidence of infection in pregnant women was also reviewed.

6.
Genome Biol ; 22(1): 221, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1634619

ABSTRACT

Single-cell RNA-seq (scRNA-seq) profiles gene expression with high resolution. Here, we develop a stepwise computational method-called SCAPTURE to identify, evaluate, and quantify cleavage and polyadenylation sites (PASs) from 3' tag-based scRNA-seq. SCAPTURE detects PASs de novo in single cells with high sensitivity and accuracy, enabling detection of previously unannotated PASs. Quantified alternative PAS transcripts refine cell identity analysis beyond gene expression, enriching information extracted from scRNA-seq data. Using SCAPTURE, we show changes of PAS usage in PBMCs from infected versus healthy individuals at single-cell resolution.


Subject(s)
Deep Learning , Polyadenylation , RNA-Seq , Single-Cell Analysis , COVID-19/diagnosis , Humans , SARS-CoV-2 , Sensitivity and Specificity , Sequence Analysis, RNA , Transcriptome
7.
Front Endocrinol (Lausanne) ; 12: 791476, 2021.
Article in English | MEDLINE | ID: covidwho-1581361

ABSTRACT

Background: We aimed to understand how glycaemic levels among COVID-19 patients impact their disease progression and clinical complications. Methods: We enrolled 2,366 COVID-19 patients from Huoshenshan hospital in Wuhan. We stratified the COVID-19 patients into four subgroups by current fasting blood glucose (FBG) levels and their awareness of prior diabetic status, including patients with FBG<6.1mmol/L with no history of diabetes (group 1), patients with FBG<6.1mmol/L with a history of diabetes diagnosed (group 2), patients with FBG≥6.1mmol/L with no history of diabetes (group 3) and patients with FBG≥6.1mmol/L with a history of diabetes diagnosed (group 4). A multivariate cause-specific Cox proportional hazard model was used to assess the associations between FBG levels or prior diabetic status and clinical adversities in COVID-19 patients. Results: COVID-19 patients with higher FBG and unknown diabetes in the past (group 3) are more likely to progress to the severe or critical stage than patients in other groups (severe: 38.46% vs 23.46%-30.70%; critical 7.69% vs 0.61%-3.96%). These patients also have the highest abnormal level of inflammatory parameters, complications, and clinical adversities among all four groups (all p<0.05). On day 21 of hospitalisation, group 3 had a significantly higher risk of ICU admission [14.1% (9.6%-18.6%)] than group 4 [7.0% (3.7%-10.3%)], group 2 [4.0% (0.2%-7.8%)] and group 1 [2.1% (1.4%-2.8%)], (P<0.001). Compared with group 1 who had low FBG, group 3 demonstrated 5 times higher risk of ICU admission events during hospitalisation (HR=5.38, 3.46-8.35, P<0.001), while group 4, where the patients had high FBG and prior diabetes diagnosed, also showed a significantly higher risk (HR=1.99, 1.12-3.52, P=0.019), but to a much lesser extent than in group 3. Conclusion: Our study shows that COVID-19 patients with current high FBG levels but unaware of pre-existing diabetes, or possibly new onset diabetes as a result of COVID-19 infection, have a higher risk of more severe adverse outcomes than those aware of prior diagnosis of diabetes and those with low current FBG levels.


Subject(s)
Blood Glucose/metabolism , COVID-19/blood , Adult , Aged , Aged, 80 and over , Fasting/blood , Female , Hospitalization , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Factors
8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292329

ABSTRACT

Background: :The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading globally. The information regarding the characteristics and prognosis of antibody non-responders with COVID-19 is scarce. Method: In this retrospective, single-center study, we included all the patients with confirmed COVID-19 using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) admitted to the Fire God Mountain hospital from February 3, 2020, to April 14, 2020. A total of 1921 patients were divided into the antibody-negative group (n=94) and antibody-positive group (n=1827), and the 1:1 propensity score matching (PSM) was used to match two groups. Results: : In the antibody negative group, 40 patients (42.6%) were male, 54 patients (57.4%) were female, and 49 patients (52.1%) were older than 65 years old. Cough was the most common symptoms in the antibody negative group. White blood cell counts (WBC) 6.6×109/L [5.0, 9.1], Neutrophils 4.3×109/L [3.1, 6.6], C-reactive protein 7.3 mg/L [1.3, 49.0], Procalcitonin (PCT) 0.1 ng/mL [0.0, 0.2], Interleukin-6 (IL-6) 64.2 [1.5, 28.7], Lactate dehydrogenase (LDH) 193.8 U/L [154.9,260.6], Creatine kinase 60.5 U/L [40.5, 103.7], Creatine kinase isoenzyme 10.3 ng/mL [8.2, 14.5], Urea nitrogen 5.3 mmol/L [4.0, 8.7] and Creatinine 77.7 μmol/L [60.6, 98.7] were significantly higher in antibody negative patients than in antibody positive group (P<0.005). The days of nucleic acid negative conversion in the antibody negative group was shorter than that in the antibody positive group (P < 0.001). Meanwhile, the hospitalization time of antibody negative patients was shorter than that of antibody positive patients (8.0 [6.0, 10.0] VS 13.0 [8.2, 23.0], P < 0.001). Conclusion: Some COVID-19 patients without specific antibodies had mild symptoms, but the inflammatory reaction caused by innate clinical immunity was more intense than those with antibodies, and the virus was cleared faster. The production of specific antibodies was unnecessary for SARS-CoV-2 clearance, and non-specific immune responses played an essential role in virus clearance.

9.
Int Dent J ; 72(2): 236-241, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1440051

ABSTRACT

OBJECTIVES: This study was performed to examine changes in the number of patient visits and types of oral services in an oral emergency department from the beginning to the control stage of the coronavirus disease 2019 (COVID-19) outbreak in Beijing. METHODS: The numbers of daily oral emergency visits from January 20 to March 24, 2020, at a dental university hospital in Beijing and daily newly confirmed COVID-19 cases in Beijing during the same period were collected and analysed. All oral emergency patient information (including sex, age, and oral diagnosis) was also collected and analysed. Patients with incomplete medical data were excluded. RESULTS: In total, 12,416 patients were included in this study. The number of daily emergency visits was negatively correlated with the number of newly confirmed local COVID-19 cases in Beijing (P < .001). The number of daily emergency visits during the COVID-19 stable period in Beijing was greater than that during the outbreak period (P < .001). Compared to those in the COVID-19 outbreak period, the percentages of females, children and adolescents, patients with acute toothache, and patients with nonurgent cases were higher in the stable period, and the numbers of patients with toothache, trauma, infection, and nonemergency conditions increased in the COVID-19 stable period (P < .001). CONCLUSIONS: COVID-19 significantly influenced the number of patient visits and the percentages of patients with oral emergency situations in the oral emergency department. There were obvious differences in treatment seeking for oral emergencies between the COVID-19 periods in Beijing. There was an inverse relationship between daily oral emergency visits and daily confirmed COVID-19 cases in Beijing.


Subject(s)
COVID-19 , Adolescent , COVID-19/epidemiology , Child , Emergency Service, Hospital , Female , Humans , Retrospective Studies , SARS-CoV-2
10.
N Engl J Med ; 385(8): 695-706, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1364626

ABSTRACT

BACKGROUND: Atogepant is an oral, small-molecule, calcitonin gene-related peptide receptor antagonist that is being investigated for the preventive treatment of migraine. METHODS: In a phase 3, double-blind trial, we randomly assigned adults with 4 to 14 migraine days per month in a 1:1:1:1 ratio to receive a once-daily dose of oral atogepant (10 mg, 30 mg, or 60 mg) or placebo for 12 weeks. The primary end point was the change from baseline in the mean number of migraine days per month across the 12 weeks. Secondary end points included headache days per month, a reduction from baseline of at least 50% in the 3-month average of migraine days per month, quality of life, and scores on the Activity Impairment in Migraine-Diary (AIM-D). RESULTS: A total of 2270 participants were screened, 910 were enrolled, and 873 were included in the efficacy analysis; 214 were assigned to the 10-mg atogepant group, 223 to the 30-mg atogepant group, 222 to the 60-mg atogepant group, and 214 to the placebo group. The mean number of migraine days per month at baseline ranged from 7.5 to 7.9 in the four groups. The changes from baseline across 12 weeks were -3.7 days with 10-mg atogepant, -3.9 days with 30-mg atogepant, -4.2 days with 60-mg atogepant, and -2.5 days with placebo. The mean differences from placebo in the change from baseline were -1.2 days with 10-mg atogepant (95% confidence interval [CI], -1.8 to -0.6), -1.4 days with 30-mg atogepant (95% CI, -1.9 to -0.8), and -1.7 days with 60-mg atogepant (95% CI, -2.3 to -1.2) (P<0.001 for all comparisons with placebo). Results for the secondary end points favored atogepant over placebo with the exceptions of the AIM-D Performance of Daily Activities score and the AIM-D Physical Impairment score for the 10-mg dose. The most common adverse events were constipation (6.9 to 7.7% across atogepant doses) and nausea (4.4 to 6.1% across atogepant doses). Serious adverse events included one case each of asthma and optic neuritis in the 10-mg atogepant group. CONCLUSIONS: Oral atogepant once daily was effective in reducing the number of migraine days and headache days over a period of 12 weeks. Adverse events included constipation and nausea. Longer and larger trials are needed to determine the effect and safety of atogepant for migraine prevention. (Funded by Allergan; ADVANCE ClinicalTrials.gov number, NCT03777059.).


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists/administration & dosage , Migraine Disorders/prevention & control , Piperidines/administration & dosage , Pyridines/administration & dosage , Pyrroles/administration & dosage , Spiro Compounds/administration & dosage , Adolescent , Adult , Aged , Calcitonin Gene-Related Peptide Receptor Antagonists/adverse effects , Calcitonin Gene-Related Peptide Receptor Antagonists/therapeutic use , Constipation/chemically induced , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Intention to Treat Analysis , Male , Middle Aged , Nausea/chemically induced , Piperidines/adverse effects , Piperidines/therapeutic use , Pyridines/adverse effects , Pyridines/therapeutic use , Pyrroles/adverse effects , Pyrroles/therapeutic use , Spiro Compounds/adverse effects , Spiro Compounds/therapeutic use , Young Adult
11.
Emerg Microbes Infect ; 10(1): 1507-1514, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1310873

ABSTRACT

Severe respiratory disease coronavirus-2 (SARS-CoV-2) has been the most devastating disease COVID-19 in the century. One of the unsolved scientific questions of SARS-CoV-2 is the animal origin of this virus. Bats and pangolins are recognized as the most probable reservoir hosts that harbour highly similar SARS-CoV-2 related viruses (SARSr-CoV-2). This study identified a novel lineage of SARSr-CoVs, including RaTG15 and seven other viruses, from bats at the same location where we found RaTG13 in 2015. Although RaTG15 and the related viruses share 97.2% amino acid sequence identities with SARS-CoV-2 in the conserved ORF1b region, it only shows less than 77.6% nucleotide identity to all known SARSr-CoVs at the genome level, thus forming a distinct lineage in the Sarbecovirus phylogenetic tree. We found that the RaTG15 receptor-binding domain (RBD) can bind to ACE2 from Rhinolophus affinis, Malayan pangolin, and use it as an entry receptor, except for ACE2 from humans. However, it contains a short deletion and has different key residues responsible for ACE2 binding. In addition, we showed that none of the known viruses in bat SARSr-CoV-2 lineage discovered uses human ACE2 as efficiently as the pangolin-derived SARSr-CoV-2 or some viruses in the SARSr-CoV-1 lineage. Therefore, further systematic and longitudinal studies in bats are needed to prevent future spillover events caused by SARSr-CoVs or to understand the origin of SARS-CoV-2 better.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Cell Lineage , Chiroptera/virology , SARS Virus/isolation & purification , SARS-CoV-2/classification , Animals , Host Specificity , Phylogeny , SARS Virus/classification
12.
Clin Chim Acta ; 519: 26-31, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1176557

ABSTRACT

BACKGROUND AND AIMS: The reduced fucosylation in the spike glycoprotein of SARS-CoV-2 and the IgG antibody has been observed in COVID-19. However, the clinical relevance of α-l-fucosidase, the enzyme for defucosylation has not been discovered. MATERIALS AND METHODS: 585 COVID-19 patients were included to analyze the correlations of α-l-fucosidase activity with the nucleic acid test, IgM/IgG, comorbidities, and disease progression. RESULTS: Among the COVID-19 patients, 5.75% were double-negative for nucleic acid and antibodies. All of them had increased α-l-fucosidase, while only one had abnormal serum amyloid A (SAA) and C-reactive protein (CRP). The abnormal rate of α-l-fucosidase was 81.82% before the presence of IgM, 100% in the presence of IgM, and 66.2% in the presence of IgG. 73.42% of patients with glucometabolic disorders had increased α-l-fucosidase activity and had the highest mortality of 6.33%. The increased α-l-fucosidase was observed in 55.8% of non-severe cases and 72.9% of severe cases, with an odds ratio of 2.118. The α-l-fucosidase mRNA was irrelevant to its serum activity. CONCLUSION: The change in α-l-fucosidase activity in COVID-19 preceded the IgM and SAA and showed a preferable relation with glucometabolic disorders, which may be conducive to virus invasion or invoke an immune response against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin M , alpha-L-Fucosidase
13.
Front Med ; 15(2): 252-263, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1053070

ABSTRACT

An unexpected observation among the COVID-19 pandemic is that smokers constituted only 1.4%-18.5% of hospitalized adults, calling for an urgent investigation to determine the role of smoking in SARS-CoV-2 infection. Here, we show that cigarette smoke extract (CSE) and carcinogen benzo(a)pyrene (BaP) increase ACE2 mRNA but trigger ACE2 protein catabolism. BaP induces an aryl hydrocarbon receptor (AhR)-dependent upregulation of the ubiquitin E3 ligase Skp2 for ACE2 ubiquitination. ACE2 in lung tissues of non-smokers is higher than in smokers, consistent with the findings that tobacco carcinogens downregulate ACE2 in mice. Tobacco carcinogens inhibit SARS-CoV-2 spike protein pseudovirions infection of the cells. Given that tobacco smoke accounts for 8 million deaths including 2.1 million cancer deaths annually and Skp2 is an oncoprotein, tobacco use should not be recommended and cessation plan should be prepared for smokers in COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Adult , Animals , Epithelial Cells , Humans , Lung , Mice , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Ubiquitin-Protein Ligases/genetics
14.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: covidwho-1024213

ABSTRACT

The Chinese horseshoe bat (Rhinolophus sinicus), reservoir host of severe acute respiratory syndrome coronavirus (SARS-CoV), carries many bat SARS-related CoVs (SARSr-CoVs) with high genetic diversity, particularly in the spike gene. Despite these variations, some bat SARSr-CoVs can utilize the orthologs of the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), for entry. It is speculated that the interaction between bat ACE2 and SARSr-CoV spike proteins drives diversity. Here, we identified a series of R. sinicus ACE2 variants with some polymorphic sites involved in the interaction with the SARS-CoV spike protein. Pseudoviruses or SARSr-CoVs carrying different spike proteins showed different infection efficiencies in cells transiently expressing bat ACE2 variants. Consistent results were observed by binding affinity assays between SARS-CoV and SARSr-CoV spike proteins and receptor molecules from bats and humans. All tested bat SARSr-CoV spike proteins had a higher binding affinity to human ACE2 than to bat ACE2, although they showed a 10-fold lower binding affinity to human ACE2 compared with that of their SARS-CoV counterpart. Structure modeling revealed that the difference in binding affinity between spike and ACE2 might be caused by the alteration of some key residues in the interface of these two molecules. Molecular evolution analysis indicates that some key residues were under positive selection. These results suggest that the SARSr-CoV spike protein and R. sinicus ACE2 may have coevolved over time and experienced selection pressure from each other, triggering the evolutionary arms race dynamics.IMPORTANCE Evolutionary arms race dynamics shape the diversity of viruses and their receptors. Identification of key residues which are involved in interspecies transmission is important to predict potential pathogen spillover from wildlife to humans. Previously, we have identified genetically diverse SARSr-CoVs in Chinese horseshoe bats. Here, we show the highly polymorphic ACE2 in Chinese horseshoe bat populations. These ACE2 variants support SARS-CoV and SARSr-CoV infection but with different binding affinities to different spike proteins. The higher binding affinity of SARSr-CoV spike to human ACE2 suggests that these viruses have the capacity for spillover to humans. The positive selection of residues at the interface between ACE2 and SARSr-CoV spike protein suggests long-term and ongoing coevolutionary dynamics between them. Continued surveillance of this group of viruses in bats is necessary for the prevention of the next SARS-like disease.


Subject(s)
Biological Coevolution , Chiroptera/virology , SARS Virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , Animals , Binding Sites , Chiroptera/classification , Chiroptera/genetics , Coronavirus Infections/virology , Evolution, Molecular , Genetic Variation , HeLa Cells , Humans , Models, Molecular , Mutation , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Selection, Genetic , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
16.
Clin Exp Pharmacol Physiol ; 48(2): 203-210, 2021 02.
Article in English | MEDLINE | ID: covidwho-885766

ABSTRACT

The coronavirus disease 2019 (COVID-19) is an epidemic disease caused by the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) and spreading throughout the world rapidly. Here we evaluated the efficacy of the Lopinavir/Ritonavir (LPV/r) and its combination with other drugs in the treatment of COVID-19. We included 170 confirmed COVID-19 patients who had been cured and discharged. Their antiviral therapies were LPV/r alone or combinations with interferon (IFN), Novaferon and Arbidol. We evaluated the medication efficacy by comparing the time of the negative nucleic acid conversion and the length of hospitalization mainly. The LPV/r + Novaferon [6.00 (4.00-8.00) and 7.50 (5.00-10.00) days] had shorter time of the negative nucleic acid conversion (P = .0036) and shorter time of hospitalization (P < .001) compared with LPV/r alone [9.00 (5.00-12.00) and 12.00 (11.00-15.00) days] and LPV/r + IFN [9.00 (7.25-11.00) and 12.00 (10.00-13.50) days]. On the contrary, LPV/r + IFN [9.00 (7.25-11.00) and 12.00 (10.00-13.50) days] had shorter time of the negative nucleic acid conversion (P = .031) and shorter time of hospitalization (P < .001) compared with LPV/r + IFN +Novaferon [10.00 (8.00-11.25) and 13.50 (11.50-17.00) days] and LPV/r + IFN +Arbidol [14.00 (9.75-19.00) and 19.50 (13.25-24.00) days]. In conclusion, the combination of LPV/r and Novaferon may have better efficacy against COVID-19. However, adding IFN based on LPV/r + Novaferon or adding Arbidol based on LPV/r + IFN may not improve the efficacy.


Subject(s)
COVID-19/drug therapy , Lopinavir/pharmacology , Ritonavir/pharmacology , Adult , Drug Interactions , Female , Humans , Lopinavir/therapeutic use , Male , Middle Aged , Retrospective Studies , Ritonavir/therapeutic use , Treatment Outcome
17.
Nat Rev Microbiol ; 19(3): 141-154, 2021 03.
Article in English | MEDLINE | ID: covidwho-834895

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute respiratory disease, named 'coronavirus disease 2019' (COVID-19), which threatens human health and public safety. In this Review, we describe the basic virology of SARS-CoV-2, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses. We summarize current knowledge of clinical, epidemiological and pathological features of COVID-19, as well as recent progress in animal models and antiviral treatment approaches for SARS-CoV-2 infection. We also discuss the potential wildlife hosts and zoonotic origin of this emerging virus in detail.


Subject(s)
COVID-19/epidemiology , COVID-19/pathology , SARS-CoV-2/genetics , Age Factors , Animals , COVID-19/virology , Coronavirus/classification , Coronavirus/genetics , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/physiology , Zoonoses
18.
Yi Chuan ; 42(9): 870-881, 2020 Sep 20.
Article in English | MEDLINE | ID: covidwho-782539

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing pandemic of new coronavirus pneumonia (corona virus disease 2019, COVID-19). The virus has a long incubation period and strong infectivity, which poses a major threat to global health and safety. Detection of SARS-CoV-2 nucleic acid lies at the center of rapid detection of COVID-19, which is instrumental for mitigation of the ongoing pandemic. As of August 17, 2020, The National Medical Products Administration in China has approved 15 new coronavirus nucleic acid detection kits, 10 kits of which are based on reverse transcription-real-time quantitative PCR (RT-qPCR) technology. The remaining kits use five molecular diagnostic technologies different from RT-qPCR. This article reviews the principles, reaction time, advantages and disadvantages of above 15 detection kits, in order to provide references for rapid screening, diagnosis, prevention and control of COVID-19 and similar infectious diseases.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Humans , Pathology, Molecular , Pneumonia, Viral/diagnosis , SARS-CoV-2
19.
Zhongguo Zhen Jiu ; 40(7): 693-6, 2020 Jul 12.
Article in Chinese | MEDLINE | ID: covidwho-639171

ABSTRACT

Combined with previous clinical experience in anti-epidemic and acupuncture, the prevention program of fire needling therapy for coronavirus disease 2019 (COVID-19) was drawn out. Fire needling therapy has the effects of clearing heat, removing dampness, replenishing for the deficiency, removing stasis and detoxifying, which is mainly aimed at preventing populations, light and common types cases, and cases in the recovery period. Acupoints of governor vessel, lung meridian, bladder meridian and stomach meridian are mainly used in this program. For the special groups, such as children, elderly and weak, and pregnant women, Shenzhu (GV 12), Danshu (BL 19), Geshu (BL 17), Zhigou (TE 6), etc. are added. It is hoped that fire needling therapy will be applied in the community and square cabin hospitals as an effective supplement to anti-epidemic of traditional Chinese medicine (TCM).


Subject(s)
Acupuncture Therapy/methods , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Acupuncture Points , Aged , Betacoronavirus , COVID-19 , Child , Female , Humans , Pandemics , Pregnancy , SARS-CoV-2
20.
Nature ; 579(7798): 270-273, 2020 03.
Article in English | MEDLINE | ID: covidwho-246

ABSTRACT

Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/blood , Betacoronavirus/metabolism , Betacoronavirus/ultrastructure , COVID-19 , Cell Line , China/epidemiology , Chlorocebus aethiops , Female , Genome, Viral/genetics , Humans , Male , Peptidyl-Dipeptidase A/metabolism , Phylogeny , SARS Virus/classification , SARS Virus/genetics , SARS-CoV-2 , Sequence Homology, Nucleic Acid , Severe Acute Respiratory Syndrome , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL