Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Lab Med ; 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1948375

ABSTRACT

OBJECTIVE: To evaluate the accuracy of the reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in community or primary-care settings. METHOD: We systematically searched the Web of Science, Embase, PubMed, and Cochrane Library databases. We conducted quality evaluation using ReviewManager software (version 5.0). We then used MetaDisc software (version 1.4) and Stata software (version 12.0) to build forest plots, along with a Deeks funnel plot and a bivariate boxplot for analysis. RESULT: Overall, the sensitivity, specificity, and diagnostic odds ratio were 0.79, 0.97, and 328.18, respectively. The sensitivity for the subgroup with RNA extraction appeared to be higher, at 0.88 (0.86-0.90), compared to the subgroup without RNA extraction, at 0.50 (0.45-0.55), with no significant difference in specificity. CONCLUSION: RT-LAMP assay exhibited high specificity regarding current SARS-CoV-2 infection. However, its overall sensitivity was relatively moderate. Extracting RNA was found to be beneficial in improving sensitivity.

2.
J Clin Lab Anal ; 36(7): e24495, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1877609

ABSTRACT

BACKGROUND: After encountering COVID-19 patients who test positive again after discharge, our study analyzed the pathogenesis to further assess the risk and possibility of virus reactivation. METHODS: A separate microarray was acquired from the Gene Expression Omnibus (GEO), and its samples were divided into two groups: a "convalescent-RTP" group consisting of convalescent and "retesting positive" (RTP) patients (group CR) and a "healthy-RTP" group consisting of healthy control and RTP patients (group HR). The enrichment analysis was performed with R software, obtaining the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the protein-protein interaction (PPI) networks of each group were established, and the hub genes were discovered using the cytoHubba plugin. RESULTS: In this study, 6622 differentially expressed genes were identified in the group CR, among which RAB11B-AS1, DISP1, MICAL3, PSMG1, and DOCK4 were up-regulated genes, and ANAPC1, IGLV1-40, SORT1, PLPPR2, and ATP1A1-AS1 were down-regulated. 7335 genes were screened in the group HR, including the top 5 up-regulated genes ALKBH6, AMBRA1, MIR1249, TRAV18, and LRRC69, and the top 5 down-regulated genes FAM241B, AC018529.3, AL031963.3, AC006946.1, and FAM149B1. The GO and KEGG analysis of the two groups revealed a significant enrichment in immune response and apoptosis. In the PPI network constructed, group CR and group HR identified 10 genes, respectively, and TP53BP1, SNRPD1, and SNRPD2 were selected as hub genes. CONCLUSIONS: Using the messenger ribonucleic acid (mRNA) expression data from GSE166253, we found TP53BP1, SNRPD1, and SNRPD2 as hub genes in RTP patients, which is vital to the management and prognostic prediction of RTP patients.


Subject(s)
COVID-19 , Computational Biology , COVID-19/diagnosis , COVID-19/genetics , COVID-19 Testing , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/genetics , Humans , Patient Discharge , Recurrence
3.
Jpn J Infect Dis ; 75(3): 302-308, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1865650

ABSTRACT

Based on previous studies, we found that Bacillus Calmette-Guérin (BCG) vaccination may play a role in preventing SARS-CoV-2 infection. Therefore, we conducted a meta-analysis to investigate this protective effect. We searched the Embase, PubMed, Web of Science, Cochrane Library, BioRxiv, and MedRxiv databases for studies that evaluated the relationship between BCG vaccination and SARS-CoV-2 infection or COVID-19 disease. The quality of all included studies was assessed using the Risk of Bias in Non-randomized Studies of Interventions and the Agency for Healthcare Research and Quality data tools. Review Manager (Version 5.3) was used to conduct all the data analyses. A total of eight studies were ultimately included in our meta-analysis. Our primary analysis found a significantly lower SARS-CoV-2 infection rate in the BCG vaccination group compared to the control group, with an odds ratio of 0.61, (95% confidence interval 0.39 to 0.95, P = 0.03; I2 = 31%, and P = 0.21, respectively). Our study indicates that BCG vaccination can protect against SARS-CoV-2 infection. However, there is insufficient evidence that BCG vaccination can reduce the severity of COVID-19.


Subject(s)
COVID-19 , BCG Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
4.
Yonsei Med J ; 63(5): 480-489, 2022 May.
Article in English | MEDLINE | ID: covidwho-1834349

ABSTRACT

PURPOSE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen of coronavirus disease 2019. Diagnostic methods based on the clustered regularly interspaced short palindromic repeats (CRISPR) have been developed to detect SARS-CoV-2 rapidly. Therefore, a systematic review and meta-analysis were performed to assess the diagnostic accuracy of CRISPR for detecting SARS-CoV-2 infection. MATERIALS AND METHODS: Studies published before August 2021 were retrieved from four databases, using the keywords "SARS-CoV-2" and "CRISPR." Data were collected from these publications, and the sensitivity, specificity, negative likelihood ratio (NLR), positive likelihood ratio (PLR), and diagnostic odds ratio (DOR) were calculated. The summary receiver operating characteristic curve was plotted for analysis with MetaDiSc 1.4. The Stata 15.0 software was used to draw Deeks' funnel plots to evaluate publication bias. RESULTS: We performed a pooled analysis of 38 independent studies shown in 30 publications. The reference standard was reverse transcription-quantitative PCR. The results indicated that the sensitivity of CRISPR-based methods for diagnosis was 0.94 (95% CI 0.93-0.95), the specificity was 0.98 (95% CI 0.97-0.99), the PLR was 34.03 (95% CI 20.81-55.66), the NLR was 0.08 (95% CI 0.06-0.10), and the DOR was 575.74 (95% CI 382.36-866.95). The area under the curve was 0.9894. CONCLUSION: Studies indicate that a diagnostic method based on CRISPR has high sensitivity and specificity. Therefore, this would be a potential diagnostic tool to improve the accuracy of SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , ROC Curve , Reference Standards , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Journal of Econometrics ; 2022.
Article in English | ScienceDirect | ID: covidwho-1778284

ABSTRACT

Mediation analysis draws increasing attention in many research areas such as economics, finance and social sciences. In this paper, we propose new statistical inference procedures for high dimensional mediation models, in which both the outcome model and the mediator model are linear with high dimensional mediators. Traditional procedures for mediation analysis cannot be used to make statistical inference for high dimensional linear mediation models due to high-dimensionality of the mediators. We propose an estimation procedure for the indirect effects of the models via a partially penalized least squares method, and further establish its theoretical properties. We further develop a partially penalized Wald test on the indirect effects, and prove that the proposed test has a χ2 limiting null distribution. We also propose an F-type test for direct effects and show that the proposed test asymptotically follows a χ2-distribution under null hypothesis and a noncentral χ2-distribution under local alternatives. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed tests and compare their performance with existing ones. We further apply the newly proposed statistical inference procedures to study stock reaction to COVID-19 pandemic via an empirical analysis of studying the mediation effects of financial metrics that bridge company’s sector and stock return.

6.
Front Psychol ; 13: 764638, 2022.
Article in English | MEDLINE | ID: covidwho-1775762

ABSTRACT

Objective: Investigating the mental health status of Chinese resident physicians during the 2019 new coronavirus outbreak. Methods: A cluster sampling method was adopted to collect all China-wide resident physicians during the epidemic period as the research subjects. The Symptom Checklist-90 self-rating scale was used to assess mental health using WeChat electronic questionnaires. Results: In total, 511 electronic questionnaires were recovered, all of which were valid. The negative psychological detection rate was 93.9% (480/511). Among the symptoms on the self-rating scale, more than half of the Chinese resident physicians had mild to moderate symptoms of mental unhealthiness, and a few had asymptomatic or severe unhealthy mental states. In particular, the detection rate of abnormality was 88.3% (451/511), obsessive-compulsive symptoms was 90.4% (462/511), the sensitive interpersonal relationship was 90.6% (463/511), depression abnormality was 90.8% (464)/511), anxiety abnormality was 88.3% (451/511), hostility abnormality was 85.3% (436/511), terror abnormality was 84.9% (434/511), paranoia abnormality was 86.9% (444/511), psychotic abnormalities was 89.0% (455/511), and abnormal sleeping and eating status was 90.8% (464/511). The scores of various psychological symptoms of pediatric resident physicians were significantly lower than those of non-pediatrics (p < 0.05). Conclusion: The new coronavirus epidemic has a greater impact on the mental health of Chinese resident physicians.

7.
Biochem Genet ; 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1718783

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is an enveloped single-stranded RNA virus that can lead to respiratory symptoms and damage many organs such as heart, kidney, intestine, brain and liver. It has not been clearly documented whether myocardial injury is caused by direct infection of cardiomyocytes, lung injury, or other unknown mechanisms. The gene expression profile of GSE150392 was obtained from the Gene Expression Omnibus (GEO) database. The processing of high-throughput sequencing data and the screening of differentially expressed genes (DEGs) were implemented by R software. The R software was employed to analyze the Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The protein-protein interaction (PPI) network of the DEGs was constructed by the STRING website. The Cytoscape software was applied for the visualization of PPI network and the identification of hub genes. The statistical analysis was performed by the GraphPad Prism software to verify the hub genes. A total of 516 up-regulated genes and 191 down-regulated genes were screened out. The top 1 enrichment items of GO in biological process (BP), Cellular Component (CC), and Molecular Function (MF) were type I interferon signaling pathway, sarcomere, and receptor ligand activity, respectively. The top 10 enrichment pathways, including TNF signaling pathway, were identified by KEGG enrichment analysis. A PPI network was established, consisting of 613 nodes and 3,993 edges. The 12 hub genes were confirmed as statistically significant, which was verified by GSE151879 dataset. In conclusion, the hub genes of human iPSC-cardiomyocytes infected with SARS-CoV-2 were identified through bioinformatics analysis, which may be used as biomarkers for further research.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322526

ABSTRACT

The aim of our study was to describe the clinical characteristics and outcomes of patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia who underwent elective tracheostomies. We investigated all COVID-19 patients who underwent elective tracheostomies in intensive care units (ICUs) of 23 hospitals in Hubei Province, China, from January 8, 2020 to March 25, 2020. Demographic information, clinical characteristics, treatment, details of the tracheostomy procedure, successful weaning after tracheostomy, and living status were collected and analyzed. A total of 80 patients were included. The median duration from endotracheal intubation to tracheostomy was 17.5 [IQR 11.3-27.0] days. Most tracheotomies were performed by ICU physicians (62 (77.5%)) and using percutaneous techniques (63 (78.8%)) at the ICU bedside (76 (95.0%)). At 60 days after intubation, 31 (38.8%) patients experienced successful weaning from the ventilator, 17 (21.2%) patients were discharged from the ICU, and 43 (53.8%) patients had died. Higher 60-day mortality (22 (73.3%) vs 21 (42.0%)) was identified in patients who underwent early tracheostomy. In patients with SARS-CoV-2 pneumonia, tracheostomies were feasible to conduct by ICU physicians at bedside with few major complications. However, tracheostomies within 14 days of endotracheal intubation should be avoided.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-311712

ABSTRACT

Mediation analysis draws increasing attention in many scientific areas such as genomics, epidemiology and finance. In this paper, we propose new statistical inference procedures for high dimensional mediation models, in which both the outcome model and the mediator model are linear with high dimensional mediators. Traditional procedures for mediation analysis cannot be used to make statistical inference for high dimensional linear mediation models due to high-dimensionality of the mediators. We propose an estimation procedure for the indirect effects of the models via a partial penalized least squares method, and further establish its theoretical properties. We further develop a partial penalized Wald test on the indirect effects, and prove that the proposed test has a $χ

10.
J Virol Methods ; 301: 114460, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1616640

ABSTRACT

The SARS-CoV-2 infection rate, as well as mortality rate, is high. There is an urgent need for a high-throughput, accurate and reliable method of diagnosing COVID-19 pneumonia. We included references from databases, such as PubMed, Cochrane Library, Web of Science, and Embase, and extracted data. Then, MetaDisc and STATA were used to establish forest plots and funnel plots for meta-analysis. We collected 14 articles and performed a systematic review. The following results were obtained: sensitivity and specificity were 0.97 (0.96 to 0.98) and 0.97 (0.96 to 0.98) respectively; PLR and NLR were 24.51 (16.63-36.12) and 0.03 (0.01 to 0.10) respectively, DOR was 975.15 (430.11-2210.88), and AUC was 0.9926. When Xpress detects SARS-CoV-2 in different samples, the heterogeneity is small and the specificity and sensitivity are extremely high. We recommend the employment of Xpert Xpress analysis in rapid screening.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity
11.
Eur J Med Res ; 26(1): 146, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1582003

ABSTRACT

BACKGROUND: At the end of 2019, the world witnessed the emergence and ravages of a viral infection induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also known as the coronavirus disease 2019 (COVID-19), it has been identified as a public health emergency of international concern (PHEIC) by the World Health Organization (WHO) because of its severity. METHODS: The gene data of 51 samples were extracted from the GSE150316 and GSE147507 data set and then processed by means of the programming language R, through which the differentially expressed genes (DEGs) that meet the standards were screened. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the selected DEGs to understand the functions and approaches of DEGs. The online tool STRING was employed to construct a protein-protein interaction (PPI) network of DEGs and, in turn, to identify hub genes. RESULTS: A total of 52 intersection genes were obtained through DEG identification. Through the GO analysis, we realized that the biological processes (BPs) that have the deepest impact on the human body after SARS-CoV-2 infection are various immune responses. By using STRING to construct a PPI network, 10 hub genes were identified, including IFIH1, DDX58, ISG15, EGR1, OASL, SAMD9, SAMD9L, XAF1, IFITM1, and TNFSF10. CONCLUSION: The results of this study will hopefully provide guidance for future studies on the pathophysiological mechanism of SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , Computational Biology/methods , Gene Expression Regulation/genetics , Lung/pathology , Protein Interaction Maps/genetics , COVID-19/pathology , Databases, Genetic , Gene Expression Profiling , Gene Ontology , Humans , Immunity, Humoral/genetics , Immunity, Humoral/immunology , Lung/virology , Neutrophil Activation/genetics , Neutrophil Activation/immunology , Neutrophils/immunology , SARS-CoV-2 , Transcriptome/genetics
12.
Jpn J Infect Dis ; 75(3): 302-308, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1542960

ABSTRACT

Based on previous studies, we found that Bacillus Calmette-Guérin (BCG) vaccination may play a role in preventing SARS-CoV-2 infection. Therefore, we conducted a meta-analysis to investigate this protective effect. We searched the Embase, PubMed, Web of Science, Cochrane Library, BioRxiv, and MedRxiv databases for studies that evaluated the relationship between BCG vaccination and SARS-CoV-2 infection or COVID-19 disease. The quality of all included studies was assessed using the Risk of Bias in Non-randomized Studies of Interventions and the Agency for Healthcare Research and Quality data tools. Review Manager (Version 5.3) was used to conduct all the data analyses. A total of eight studies were ultimately included in our meta-analysis. Our primary analysis found a significantly lower SARS-CoV-2 infection rate in the BCG vaccination group compared to the control group, with an odds ratio of 0.61, (95% confidence interval 0.39 to 0.95, P = 0.03; I2 = 31%, and P = 0.21, respectively). Our study indicates that BCG vaccination can protect against SARS-CoV-2 infection. However, there is insufficient evidence that BCG vaccination can reduce the severity of COVID-19.


Subject(s)
COVID-19 , BCG Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
13.
Biochem Genet ; 60(3): 1076-1094, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1520387

ABSTRACT

COVID-19 is a serious infectious disease that has recently swept the world, and research on its causative virus, SARS-CoV-2, remains insufficient. Therefore, this study uses bioinformatics analysis techniques to explore the human digestive tract diseases that may be caused by SARS-CoV-2 infection. The gene expression profile data set, numbered GSE149312, is from the Gene Expression Omnibus (GEO) database and is divided into a 24-h group and a 60-h group. R software is used to analyze and screen out differentially expressed genes (DEGs) and then gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses are performed. In KEGG, the pathway of non-alcoholic fatty liver disease exists in both the 24-h group and 60-h group. STRING is used to establish a protein-protein interaction (PPI) network, and Cytoscape is then used to visualize the PPI and define the top 12 genes of the node as the hub genes. Through verification, nine statistically significant hub genes are identified: AKT1, TIMP1, NOTCH, CCNA2, RRM2, TTK, BUB1B, KIF20A, and PLK1. In conclusion, the results of this study can provide a certain direction and basis for follow-up studies of SARS-CoV-2 infection of the human digestive tract and provide new insights for the prevention and treatment of diseases caused by SARS-CoV-2.


Subject(s)
COVID-19 , Computational Biology , COVID-19/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Humans , Intestines , SARS-CoV-2/genetics
14.
Signal Transduct Target Ther ; 6(1): 300, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1351933

ABSTRACT

Elderly people and patients with comorbidities are at higher risk of COVID-19 infection, resulting in severe complications and high mortality. However, the underlying mechanisms are unclear. In this study, we investigate whether miRNAs in serum exosomes can exert antiviral functions and affect the response to COVID-19 in the elderly and people with diabetes. First, we identified four miRNAs (miR-7-5p, miR-24-3p, miR-145-5p and miR-223-3p) through high-throughput sequencing and quantitative real-time PCR analysis, that are remarkably decreased in the elderly and diabetic groups. We further demonstrated that these miRNAs, either in the exosome or in the free form, can directly inhibit S protein expression and SARS-CoV-2 replication. Serum exosomes from young people can inhibit SARS-CoV-2 replication and S protein expression, while the inhibitory effect is markedly decreased in the elderly and diabetic patients. Moreover, three out of the four circulating miRNAs are significantly increased in the serum of healthy volunteers after 8-weeks' continuous physical exercise. Serum exosomes isolated from these volunteers also showed stronger inhibitory effects on S protein expression and SARS-CoV-2 replication. Our study demonstrates for the first time that circulating exosomal miRNAs can directly inhibit SARS-CoV-2 replication and may provide a possible explanation for the difference in response to COVID-19 between young people and the elderly or people with comorbidities.


Subject(s)
COVID-19/genetics , Diabetes Mellitus/genetics , MicroRNAs/genetics , Spike Glycoprotein, Coronavirus/genetics , Adult , Age Factors , Aged , COVID-19/blood , COVID-19/pathology , COVID-19/virology , China , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Cohort Studies , Diabetes Mellitus/blood , Diabetes Mellitus/pathology , Diabetes Mellitus/virology , Exercise , Exosomes/genetics , Exosomes/metabolism , Exosomes/virology , Female , Gene Expression Regulation , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Male , MicroRNAs/blood , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Virus Replication
15.
Virol J ; 18(1): 121, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1262511

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread to many countries around the world. In addition to lung disease, severe cases also displayed varying degrees of liver injury. This article will describe the latest developments regarding coronavirus and the pathogenesis of liver injury, the prone population and clinical characteristics of these patients, as well as providing some suggestions for clinical treatment.


Subject(s)
COVID-19/complications , Liver Diseases/etiology , SARS-CoV-2 , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Chemical and Drug Induced Liver Injury/pathology , Female , Humans , Incidence , Liver Diseases/diagnosis , Liver Diseases/therapy , Male , Medicine, Chinese Traditional/adverse effects
16.
Hum Genomics ; 15(1): 18, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1136250

ABSTRACT

BACKGROUND: In the novel coronavirus pandemic, the high infection rate and high mortality have seriously affected people's health and social order. To better explore the infection mechanism and treatment, the three-dimensional structure of human bronchus has been employed in a better in-depth study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We downloaded a separate microarray from the Integrated Gene Expression System (GEO) on a human bronchial organoids sample to identify differentially expressed genes (DEGS) and analyzed it with R software. After processing with R software, Gene Ontology (GO) and Kyoto PBMCs of Genes and Genomes (KEGG) were analyzed, while a protein-protein interaction (PPI) network was constructed to show the interactions and influence relationships between these differential genes. Finally, the selected highly connected genes, which are called hub genes, were verified in CytoHubba plug-in. RESULTS: In this study, a total of 966 differentially expressed genes, including 490 upregulated genes and 476 downregulated genes were used. Analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways related to immune response and cytokines. We construct protein-protein interaction network and identify 10 hub genes, including IL6, MMP9, IL1B, CXCL8, ICAM1, FGF2, EGF, CXCL10, CCL2, CCL5, CXCL1, and FN1. Finally, with the help of GSE150728, we verified that CXCl1, CXCL8, CXCL10, CCL5, EGF differently expressed before and after SARS-CoV-2 infection in clinical patients. CONCLUSIONS: In this study, we used mRNA expression data from GSE150819 to preliminarily confirm the feasibility of hBO as an in vitro model to further study the pathogenesis and potential treatment of COVID-19. Moreover, based on the mRNA differentiated expression of this model, we found that CXCL8, CXCL10, and EGF are hub genes in the process of SARS-COV-2 infection, and we emphasized their key roles in SARS-CoV-2 infection. And we also suggested that further study of these hub genes may be beneficial to treatment, prognostic prediction of COVID-19.


Subject(s)
Bronchi/virology , COVID-19/genetics , Gene Expression Regulation , Bronchi/physiology , Chemokine CXCL10/genetics , Epidermal Growth Factor/genetics , Host-Pathogen Interactions/genetics , Humans , Interleukin-8/genetics , Organoids , Protein Interaction Maps/genetics , Software
17.
J Virol Methods ; 288: 114012, 2021 02.
Article in English | MEDLINE | ID: covidwho-907187

ABSTRACT

In this study, a SYBR Green I-based real-time reverse transcription-polymerase chain reaction (RT-PCR) was developed for the clinical diagnosis of feline astroviruses (FeAstVs). Specific primers were designed based on the conserved region of the FeAstV ORF1b gene. Experiments for specificity, sensitivity, and repeatability of the assay were carried out. In addition, the assay was evaluated using clinical samples. Specificity analysis indicated that the assay showed negative results with samples of Feline Parvovirus, Feline Herpesvirus, Feline Calicivirus, Feline Bocavirus, and Feline Coronavirus, indicating good specificity of the assay. Sensitivity analysis showed that the SYBR Green I-based real-time RT-PCR method could detect as low as 3.72 × 101 copies/µL of template, which is 100-fold more sensitive compared to the conventional RT-PCR. Both intra-assay and inter-assay variability were lower than 1 %, indicating good reproducibility. Furthermore, an analysis of 150 fecal samples showed that the positive detection rate of SYBR Green I-based real-time RT-PCR was higher than that of the conventional RT-PCR, indicating the high reliability of the method. The assay is cheap and effective. Therefore, it could provide support for the detection of FeAstV in large-scale clinical testing and epidemiological investigation.


Subject(s)
Astroviridae/genetics , Cat Diseases/diagnosis , Cat Diseases/virology , Organic Chemicals , Real-Time Polymerase Chain Reaction , Animals , Benzothiazoles , Cats , Diamines , Quinolines , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL