Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell reports methods ; 2022.
Article in English | EuropePMC | ID: covidwho-1837088

ABSTRACT

The B cell “help” function of CD4+ T cells is an important mechanism of adaptive immunity. Here, we describe improved antigen-specific T-B co-cultures for quantitative measurement of T cell-dependent B cell responses, with as few as ∼90 T cells. Utilizing Mtb, we show that early priming and activation of CD4+ T cells is important for productive interaction between T and B cells, and that similar effects are achieved by supplementing co-cultures with monocytes. We find that monocytes promote survivability of B cells via BAFF and SCGF/CLEC11A, but this alone does not fully recapitulate the effects of monocyte-supplementation. Importantly, we demonstrate improved activation and immunological output of SARS-CoV-2 specific memory CD4+ T - B cell co-cultures with the inclusion of monocytes. This method may therefore provide a more sensitive assay to evaluate the B cell help quality of memory CD4+ T cells, for example after vaccination or natural infection. Graphical Ansari et al. describe an efficient T-B cell co-culture assay to assess B-cell help function of antigen-specific T helper cells in healthy and COVID-19 recovered individuals, based on the inclusion of monocytes. Increased B cell output in this assay may provide extra sensitivity to evaluate immunological responses in different contexts.

2.
Lancet Infect Dis ; 22(4): 473-482, 2022 04.
Article in English | MEDLINE | ID: covidwho-1757985

ABSTRACT

BACKGROUND: SARS-CoV-2 variants of concern (VOCs) have threatened COVID-19 vaccine effectiveness. We aimed to assess the effectiveness of the ChAdOx1 nCoV-19 vaccine, predominantly against the delta (B.1.617.2) variant, in addition to the cellular immune response to vaccination. METHODS: We did a test-negative, case-control study at two medical research centres in Faridabad, India. All individuals who had a positive RT-PCR test for SARS-CoV-2 infection between April 1, 2021, and May 31, 2021, were included as cases and individuals who had a negative RT-PCR test were included as controls after matching with cases on calendar week of RT-PCR test. The primary outcome was effectiveness of complete vaccination with the ChAdOx1 nCoV-19 vaccine against laboratory-confirmed SARS-CoV-2 infection. The secondary outcomes were effectiveness of a single dose against SARS-CoV-2 infection and effectiveness of a single dose and complete vaccination against moderate-to-severe disease among infected individuals. Additionally, we tested in-vitro live-virus neutralisation and T-cell immune responses to the spike protein of the wild-type SARS-CoV-2 and VOCs among healthy (anti-nucleocapsid antibody negative) recipients of the ChAdOx1 nCoV-19 vaccine. FINDINGS: Of 2379 cases of confirmed SARS-CoV-2 infection, 85 (3·6%) were fully vaccinated compared with 168 (8·5%) of 1981 controls (adjusted OR [aOR] 0·37 [95% CI 0·28-0·48]), giving a vaccine effectiveness against SARS-CoV-2 infection of 63·1% (95% CI 51·5-72·1). 157 (6·4%) of 2451 of cases and 181 (9·1%) of 1994) controls had received a single dose of the ChAdOx1 nCoV-19 vaccine (aOR 0·54 [95% CI 0·42-0·68]), thus vaccine effectiveness of a single dose against SARS-CoV-2 infection was 46·2% (95% CI 31·6-57·7). One of 84 cases with moderate-to-severe COVID-19 was fully vaccinated compared with 84 of 2295 cases with mild COVID-19 (aOR 0·19 [95% CI 0·01-0·90]), giving a vaccine effectiveness of complete vaccination against moderate-to-severe disease of 81·5% (95% CI 9·9-99·0). The effectiveness of a single dose against moderate-to-severe disease was 79·2% (95% CI 46·1-94·0); four of 87 individuals with moderate-to-severe COVID-19 had received a single dose compared with 153 of 2364 participants with mild disease (aOR 0·20 [95% CI 0·06-0·54]). Among 49 healthy, fully vaccinated individuals, neutralising antibody responses were lower against the alpha (B.1.1.7; geometric mean titre 244·7 [95% CI 151·8-394·4]), beta (B.1.351; 97·6 [61·2-155·8]), kappa (B.1.617.1; 112·8 [72·7-175·0]), and delta (88·4 [61·2-127·8]) variants than against wild-type SARS-CoV-2 (599·4 [376·9-953·2]). However, the antigen-specific CD4 and CD8 T-cell responses were conserved against both the delta variant and wild-type SARS-CoV-2. INTERPRETATION: The ChAdOx1 nCoV-19 vaccine remained effective against moderate-to-severe COVID-19, even during a surge that was dominated by the highly transmissible delta variant of SARS-CoV-2. Spike-specific T-cell responses were maintained against the delta variant. Such cellular immune protection might compensate for waning humoral immunity. FUNDING: Department of Biotechnology India, Council of Scientific and Industrial Research India, and Fondation Botnar.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Humans , Vaccination
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293156

ABSTRACT

The characteristics of immune memory established in response to inactivated SARS-CoV-2 vaccines remains unclear. We determined the magnitude, quality and persistence of cellular and humoral memory responses up to 6 months after vaccination with BBV152/Covaxin. Here, we show that the quantity of vaccine-induced spike- and nucleoprotein-antibodies is comparable to that following natural infection and the antibodies are detectable up to 6 months. The RBD-specific antibodies decline in the range of 3 to 10-fold against the SARS-CoV-2 variants in the order of alpha (B.1.1.7) > delta (B.1.617.2) > beta (B.1.351), with no observed impact of gamma (P.1) and kappa (B.1.617.1) variant. We found that the vaccine induces memory B cells, similar to natural infection, which are impacted by virus variants in the same order as antibodies. The vaccine further induced antigen-specific functionally potent multi-cytokine expressing CD4+ T cells in ~85% of the subjects, targeting spike and nucleoprotein of SARS-CoV-2. Marginal ~1.3 fold-reduction was observed in vaccine-induced CD4+ T cells against the beta variant, with no significant impact of the alpha and the delta variants. The antigen-specific CD4+ T cells were populated in the central memory compartment and persisted up to 6 months of vaccination. Importantly the vaccine generated Tfh cells that are endowed with B cell help potential, similar to the Tfh cells induced after natural infection. Altogether, these findings establish that the inactivated virus vaccine BBV152 induces robust immune memory to SARS-CoV-2 and variants of concern, which persist for at least 6 months after vaccination. This study provides insight into the attributes of BBV152-elicited immune memory, and has implication for future vaccine development, guidance for use of inactivated virus vaccine, and booster immunization.

5.
Nat Commun ; 12(1): 1951, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1157905

ABSTRACT

Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests do not require special equipment, are read by eye, have short development times, low cost and can be applied at the Point of Care. Here we describe a quantitative Haemagglutination test (HAT) for the detection of antibodies to the receptor binding domain of the SARS-CoV-2 spike protein. The HAT has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. We will supply aliquots of the test reagent sufficient for ten thousand test wells free of charge to qualified research groups anywhere in the world.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , Hemagglutination Tests/methods , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Agglutination Tests/methods , Antibodies, Monoclonal/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Point-of-Care Systems , Polymerase Chain Reaction , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroconversion
6.
Front Immunol ; 12: 636768, 2021.
Article in English | MEDLINE | ID: covidwho-1156122

ABSTRACT

Understanding the causes of the diverse outcome of COVID-19 pandemic in different geographical locations is important for the worldwide vaccine implementation and pandemic control responses. We analyzed 42 unexposed healthy donors and 28 mild COVID-19 subjects up to 5 months from the recovery for SARS-CoV-2 specific immunological memory. Using HLA class II predicted peptide megapools, we identified SARS-CoV-2 cross-reactive CD4+ T cells in around 66% of the unexposed individuals. Moreover, we found detectable immune memory in mild COVID-19 patients several months after recovery in the crucial arms of protective adaptive immunity; CD4+ T cells and B cells, with a minimal contribution from CD8+ T cells. Interestingly, the persistent immune memory in COVID-19 patients is predominantly targeted towards the Spike glycoprotein of the SARS-CoV-2. This study provides the evidence of both high magnitude pre-existing and persistent immune memory in Indian population. By providing the knowledge on cellular immune responses to SARS-CoV-2, our work has implication for the development and implementation of vaccines against COVID-19.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , B-Lymphocytes/virology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Female , Humans , Immunity, Cellular , Male , Middle Aged , Time Factors , Young Adult
7.
Epigenomics ; 13(6): 465-480, 2021 03.
Article in English | MEDLINE | ID: covidwho-1123737

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 is a positive-sense RNA virus, a causal agent of ongoing COVID-19 pandemic. ACE2R methylation across three CpG sites (cg04013915, cg08559914, cg03536816) determines the host cell's entry. It regulates ACE2 expression by controlling the SIRT1 and KDM5B activity. Further, it regulates Type I and III IFN response by modulating H3K27me3 and H3K4me3 histone mark. SARS-CoV-2 protein with bromodomain and protein E mimics bromodomain histones and evades from host immune response. The 2'-O MTases mimics the host's cap1 structure and plays a vital role in immune evasion through Hsp90-mediated epigenetic process to hijack the infected cells. Although the current review highlighted the critical epigenetic events associated with SARS-CoV-2 immune evasion, the detailed mechanism is yet to be elucidated.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Epigenesis, Genetic , Immune Evasion , Angiotensin-Converting Enzyme 2/genetics , Antigen Presentation , DNA Methylation , HSP90 Heat-Shock Proteins/genetics , Histones , Humans , SARS-CoV-2/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL