Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
JAMA Netw Open ; 5(8): e2225118, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1971183


Importance: In response to an increase in COVID-19 infection rates in Ontario, several systemic treatment (ST) regimens delivered in the adjuvant setting for breast cancer were temporarily permitted for neoadjuvant-intent to defer nonurgent breast cancer surgical procedures. Objective: To examine the use and compare short-term outcomes of neoadjuvant-intent vs adjuvant ST in the COVID-19 era compared with the pre-COVID-19 era. Design, Setting, and Participants: This was a retrospective population-based cohort study in Ontario, Canada. Patients with cancer starting selected ST regimens in the COVID-19 era (March 11, 2020, to September 30, 2020) were compared to those in the pre-COVID-19 era (March 11, 2019, to March 10, 2020). Patients were diagnosed with breast cancer within 6 months of starting systemic therapy. Main Outcomes and Measures: Estimates were calculated for the use of neoadjuvant vs adjuvant ST, the likelihood of receiving a surgical procedure, the rate of emergency department visits, hospital admissions, COVID-19 infections, and all-cause mortality between treatment groups over time. Results: Among a total of 10 920 patients included, 7990 (73.2%) started treatment in the pre-COVID-19 era and 7344 (67.3%) received adjuvant ST; the mean (SD) age was 61.6 (13.1) years. Neoadjuvant-intent ST was more common in the COVID-19 era (1404 of 2930 patients [47.9%]) than the pre-COVID-19 era (2172 of 7990 patients [27.2%]), with an odds ratio of 2.46 (95% CI, 2.26-2.69; P < .001). This trend was consistent across a range of ST regimens, but differed according to patient age and geography. The likelihood of receiving surgery following neoadjuvant-intent chemotherapy was similar in the COVID-19 era compared with the pre-COVID-19 era (log-rank P = .06). However, patients with breast cancer receiving neoadjuvant-intent hormonal therapy were significantly more likely to receive surgery in the COVID-19 era (log-rank P < .001). After adjustment, there were no significant changes in the rate of emergency department visits over time between patients receiving neoadjuvant ST, adjuvant ST, or ST only during the ST treatment period or postoperative period. Hospital admissions decreased in the COVID-19 era for patients who received neoadjuvant ST compared with adjuvant ST or ST alone (P for interaction = .01 for both) in either setting. Conclusions and Relevance: In this cohort study, patients were more likely to start neoadjuvant ST in the COVID-19 era, which varied across the province and by indication. There was limited evidence to suggest any substantial impact on short-term outcomes.

Breast Neoplasms , COVID-19 , Breast Neoplasms/drug therapy , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , COVID-19/epidemiology , Chemotherapy, Adjuvant , Cohort Studies , Female , Humans , Middle Aged , Neoadjuvant Therapy , Ontario/epidemiology , Retrospective Studies
JAMA Netw Open ; 5(4): e228855, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1801991


Importance: The COVID-19 pandemic has impacted cancer systems worldwide. Quantifying the changes is critical to informing the delivery of care while the pandemic continues, as well as for system recovery and future pandemic planning. Objective: To quantify change in the delivery of cancer services across the continuum of care during the COVID-19 pandemic. Design, Setting, and Participants: This population-based cohort study assessed cancer screening, imaging, diagnostic, treatment, and psychosocial oncological care services delivered in pediatric and adult populations in Ontario, Canada (population 14.7 million), from April 1, 2019, to March 1, 2021. Data were analyzed from May 1 to July 31, 2021. Exposures: COVID-19 pandemic. Main Outcomes and Measures: Cancer service volumes from the first year of the COVID-19 pandemic, defined as April 1, 2020, to March 31, 2021, were compared with volumes during a prepandemic period of April 1, 2019, to March 31, 2020. Results: During the first year of the pandemic, there were a total of 4 476 693 cancer care services, compared with 5 644 105 services in the year prior, a difference of 20.7% fewer services of cancer care, representing a potential backlog of 1 167 412 cancer services. While there were less pronounced changes in systemic treatments, emergency and urgent imaging examinations (eg, 1.9% more parenteral systemic treatments) and surgical procedures (eg, 65% more urgent surgical procedures), major reductions were observed for most services beginning in March 2020. Compared with the year prior, during the first pandemic year, cancer screenings were reduced by 42.4% (-1 016 181 screening tests), cancer treatment surgical procedures by 14.1% (-8020 procedures), and radiation treatment visits by 21.0% (-141 629 visits). Biopsies to confirm cancer decreased by up to 41.2% and surgical cancer resections by up to 27.8% during the first pandemic wave. New consultation volumes also decreased, such as for systemic treatment (-8.2%) and radiation treatment (-9.3%). The use of virtual cancer care increased for systemic treatment and radiation treatment and psychosocial oncological care visits, increasing from 0% to 20% of total new or follow-up visits prior to the pandemic up to 78% of total visits in the first pandemic year. Conclusions and Relevance: In this population-based cohort study in Ontario, Canada, large reductions in cancer service volumes were observed. While most services recovered to prepandemic levels at the end of the first pandemic year, a substantial care deficit likely accrued. The anticipated downstream morbidity and mortality associated with this deficit underscore the urgent need to address the backlog and recover cancer care and warrant further study.

COVID-19 , Influenza, Human , Neoplasms , Adult , COVID-19/epidemiology , Child , Cohort Studies , Humans , Influenza, Human/prevention & control , Neoplasms/epidemiology , Neoplasms/therapy , Ontario/epidemiology , Pandemics