Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Microbiol ; 60(3): e0128821, 2022 03 16.
Article in English | MEDLINE | ID: covidwho-1799238

ABSTRACT

Genomic sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to provide valuable insight into the ever-changing variant makeup of the COVID-19 pandemic. More than three million SARS-CoV-2 genome sequences have been deposited in Global Initiative on Sharing All Influenza Data (GISAID), but contributions from the United States, particularly through 2020, lagged the global effort. The primary goal of clinical microbiology laboratories is seldom rooted in epidemiologic or public health testing, and many laboratories do not contain in-house sequencing technology. However, we recognized the need for clinical microbiologists to lend expertise, share specimen resources, and partner with academic laboratories and sequencing cores to assist in SARS-CoV-2 epidemiologic sequencing efforts. Here, we describe two clinical and academic laboratory collaborations for SARS-CoV-2 genomic sequencing. We highlight roles of the clinical microbiologists and the academic laboratories, outline best practices, describe two divergent strategies in accomplishing a similar goal, and discuss the challenges with implementing and maintaining such programs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Genome, Viral , Humans , Laboratories , Pandemics , SARS-CoV-2/genetics
2.
EBioMedicine ; 77: 103894, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1703667

ABSTRACT

BACKGROUND: Interleukin-6 (IL-6) is elevated in SARS-CoV-2 infection. IL-6 regulates acute-phase proteins, such as alpha-1 antitrypsin (AAT), a key lung anti-protease. We investigated the protease-anti-protease balance in the circulation and pulmonary compartments in SARS-CoV-2 acute respiratory distress syndrome (ARDS) compared to non-SARS-CoV-2 ARDS (nsARDS) and the effects of tocilizumab (IL-6 receptor antagonist) on anti-protease defence in SARS-CoV-2 infection. METHODS: Levels and activity of AAT and neutrophil elastase (NE) were measured in plasma, airway tissue and tracheal secretions (TA) of people with SARS-CoV-2 ARDS or nsARDS. AAT and IL-6 levels were evaluated in people with moderate SARS-CoV-2 infection who received standard of care +/- tocilizumab. FINDINGS: AAT plasma levels doubled in SARS-CoV-2 ARDS. In lung parenchyma AAT levels were increased, as was the percentage of neutrophils involved in NET formation. A protease-anti-protease imbalance was detected in TA with active NE and no active AAT. The airway anti-protease, secretory leukoprotease inhibitor was decreased in SARS-CoV-2-infected lungs and cleaved in TA. In nsARDS, plasma AAT levels were elevated but TA samples had less AAT cleavage, with no detectable active NE in most samples. Induction of AAT in ARDS occurred mainly through IL-6. Tocilizumab down-regulated AAT during SARS-CoV-2 infection. INTERPRETATION: There is a protease-anti-protease imbalance in the airways of SARS-CoV-2-ARDS patients. This imbalance is a target for anti-protease therapy. FUNDING: NIH Serological Sciences Network, National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , alpha 1-Antitrypsin Deficiency , COVID-19/drug therapy , Humans , Peptide Hydrolases , Respiratory Distress Syndrome/etiology , SARS-CoV-2
3.
Cell Rep ; 37(3): 109839, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1439921

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.


Subject(s)
COVID-19/genetics , COVID-19/immunology , MicroRNAs/genetics , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Animals , Antiviral Agents/pharmacology , Biomarkers/metabolism , COVID-19/drug therapy , Cricetinae , Female , Ferrets , Gene Expression Regulation , Glycolysis , Healthy Volunteers , Humans , Hypoxia , Inflammation , Male , Mice , Middle Aged , Proteomics/methods , ROC Curve , Rats
4.
J Transl Med ; 18(1): 427, 2020 11 11.
Article in English | MEDLINE | ID: covidwho-916978

ABSTRACT

BACKGROUND: Foxp3+ regulatory T cells (Tregs) play essential roles in immune homeostasis and repair of damaged lung tissue. We hypothesized that patients whose lung injury resolves quickly, as measured by time to liberation from mechanical ventilation, have a higher percentage of Tregs amongst CD4+ T cells in either airway, bronchoalveolar lavage (BAL) or peripheral blood samples. METHODS: We prospectively enrolled patients with ARDS requiring mechanical ventilation and collected serial samples, the first within 72 h of ARDS diagnosis (day 0) and the second 48-96 h later (day 3). We analyzed immune cell populations and cytokines in BAL, tracheal aspirates and peripheral blood, as well as cytokines in plasma, obtained at the time of bronchoscopy. The study cohort was divided into fast resolvers (FR; n = 8) and slow resolvers (SR; n = 5), based on the median number of days until first extubation for all participants (n = 13). The primary measure was the percentage of CD4+ T cells that were Tregs. RESULTS: The BAL of FR contained more Tregs than SR. This finding did not extend to Tregs in tracheal aspirates or blood. BAL Tregs expressed more of the full-length FOXP3 than a splice variant missing exon 2 compared to Tregs in simultaneously obtained peripheral blood. CONCLUSION: Tregs are present in the bronchoalveolar space during ARDS. A greater percentage of CD4+ cells were Tregs in the BAL of FR than SR. Tregs may play a role in the resolution of ARDS, and enhancing their numbers or functions may be a therapeutic target.


Subject(s)
Respiratory Distress Syndrome , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , Humans , Respiration, Artificial , Respiratory Distress Syndrome/therapy , T-Lymphocytes, Regulatory
6.
Front Immunol ; 11: 1626, 2020.
Article in English | MEDLINE | ID: covidwho-646832

ABSTRACT

Most SARS-CoV2 infections will not develop into severe COVID-19. However, in some patients, lung infection leads to the activation of alveolar macrophages and lung epithelial cells that will release proinflammatory cytokines. IL-6, TNF, and IL-1ß increase expression of cell adhesion molecules (CAMs) and VEGF, thereby increasing permeability of the lung endothelium and reducing barrier protection, allowing viral dissemination and infiltration of neutrophils and inflammatory monocytes. In the blood, these cytokines will stimulate the bone marrow to produce and release immature granulocytes, that return to the lung and further increase inflammation, leading to acute respiratory distress syndrome (ARDS). This lung-systemic loop leads to cytokine storm syndrome (CSS). Concurrently, the acute phase response increases the production of platelets, fibrinogen and other pro-thrombotic factors. Systemic decrease in ACE2 function impacts the Renin-Angiotensin-Kallikrein-Kinin systems (RAS-KKS) increasing clotting. The combination of acute lung injury with RAS-KKS unbalance is herein called COVID-19 Associated Lung Injury (CALI). This conservative two-hit model of systemic inflammation due to the lung injury allows new intervention windows and is more consistent with the current knowledge.


Subject(s)
Acute Lung Injury/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Lung/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Systemic Inflammatory Response Syndrome/immunology , Acute Lung Injury/pathology , Acute Lung Injury/therapy , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Humans , Lung/pathology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2 , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/therapy , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/therapy
SELECTION OF CITATIONS
SEARCH DETAIL