Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
BioMed ; 1(1):41-49, 2021.
Article in English | MDPI | ID: covidwho-1367769

ABSTRACT

Background: The current pandemic has led to a proliferation of predictive models being developed to address various aspects of COVID-19 patient care. We aimed to develop an online platform that would serve as an open source repository for a curated subset of such models, and provide a simple interface for included models to allow for online calculation. This platform would support doctors during decision-making regarding diagnoses, prognoses, and follow-up of COVID-19 patients, expediting the models’ transition from research to clinical practice. Methods: In this pilot study, we performed a literature search in the PubMed and WHO databases to find suitable models for implementation on our platform. All selected models were publicly available (peer reviewed publications or open source repository) and had been validated (TRIPOD type 3 or 2b). We created a method for obtaining the regression coefficients if only the nomogram was available in the original publication. All predictive models were transcribed on a practical graphical user interface using PHP 8.0.0, and were published online together with supporting documentation and links to the associated articles. Results: The open source website currently incorporates nine models from six different research groups, evaluated on datasets from different countries. The website will continue to be populated with other models related to COVID-19 prediction as these become available. This dynamic platform allows COVID-19 researchers to contact us to have their model curated and included on our website, thereby increasing the reach and real-world impact of their work. Conclusion: We have successfully demonstrated in this pilot study that our website provides an inclusive platform for predictive models related to COVID-19. It enables doctors to supplement their judgment with patient-specific predictions from externally validated models in a user-friendly format. Additionally, this platform supports researchers in showcasing their work, which will increase the visibility and use of their models.

2.
Eur Respir J ; 56(2)2020 08.
Article in English | MEDLINE | ID: covidwho-744960

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has globally strained medical resources and caused significant mortality. OBJECTIVE: To develop and validate a machine-learning model based on clinical features for severity risk assessment and triage for COVID-19 patients at hospital admission. METHOD: 725 patients were used to train and validate the model. This included a retrospective cohort from Wuhan, China of 299 hospitalised COVID-19 patients from 23 December 2019 to 13 February 2020, and five cohorts with 426 patients from eight centres in China, Italy and Belgium from 20 February 2020 to 21 March 2020. The main outcome was the onset of severe or critical illness during hospitalisation. Model performances were quantified using the area under the receiver operating characteristic curve (AUC) and metrics derived from the confusion matrix. RESULTS: In the retrospective cohort, the median age was 50 years and 137 (45.8%) were male. In the five test cohorts, the median age was 62 years and 236 (55.4%) were male. The model was prospectively validated on five cohorts yielding AUCs ranging from 0.84 to 0.93, with accuracies ranging from 74.4% to 87.5%, sensitivities ranging from 75.0% to 96.9%, and specificities ranging from 55.0% to 88.0%, most of which performed better than the pneumonia severity index. The cut-off values of the low-, medium- and high-risk probabilities were 0.21 and 0.80. The online calculators can be found at www.covid19risk.ai. CONCLUSION: The machine-learning model, nomogram and online calculator might be useful to access the onset of severe and critical illness among COVID-19 patients and triage at hospital admission.


Subject(s)
Coronavirus Infections/diagnosis , Hospital Mortality/trends , Machine Learning , Pneumonia, Viral/diagnosis , Triage/methods , Adult , Age Factors , Aged , Area Under Curve , Belgium , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Cohort Studies , Coronavirus Infections/epidemiology , Decision Support Systems, Clinical , Female , Hospitalization/statistics & numerical data , Humans , Internationality , Italy , Male , Middle Aged , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Retrospective Studies , Risk Assessment , Severity of Illness Index , Sex Factors , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL