Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clin Infect Dis ; 73(11): e4047-e4057, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1560034

ABSTRACT

BACKGROUND: Emerging evidence suggests ethnic minorities are disproportionately affected by coronavirus disease 2019 (COVID-19). Detailed clinical analyses of multicultural hospitalized patient cohorts remain largely undescribed. METHODS: We performed regression, survival, and cumulative competing risk analyses to evaluate factors associated with mortality in patients admitted for COVID-19 in 3 large London hospitals between 25 February and 5 April, censored as of 1 May 2020. RESULTS: Of 614 patients (median age, 69 [interquartile range, 25] years) and 62% male), 381 (62%) were discharged alive, 178 (29%) died, and 55 (9%) remained hospitalized at censoring. Severe hypoxemia (adjusted odds ratio [aOR], 4.25 [95% confidence interval {CI}, 2.36-7.64]), leukocytosis (aOR, 2.35 [95% CI, 1.35-4.11]), thrombocytopenia (aOR [1.01, 95% CI, 1.00-1.01], increase per 109 decrease), severe renal impairment (aOR, 5.14 [95% CI, 2.65-9.97]), and low albumin (aOR, 1.06 [95% CI, 1.02-1.09], increase per gram decrease) were associated with death. Forty percent (n = 244) were from black, Asian, and other minority ethnic (BAME) groups, 38% (n = 235) were white, and ethnicity was unknown for 22% (n = 135). BAME patients were younger and had fewer comorbidities. Although the unadjusted odds of death did not differ by ethnicity, when adjusting for age, sex, and comorbidities, black patients were at higher odds of death compared to whites (aOR, 1.69 [95% CI, 1.00-2.86]). This association was stronger when further adjusting for admission severity (aOR, 1.85 [95% CI, 1.06-3.24]). CONCLUSIONS: BAME patients were overrepresented in our cohort; when accounting for demographic and clinical profile of admission, black patients were at increased odds of death. Further research is needed into biologic drivers of differences in COVID-19 outcomes by ethnicity.


Subject(s)
COVID-19 , Aged , Cohort Studies , Female , Humans , London/epidemiology , Male , Retrospective Studies , SARS-CoV-2 , State Medicine
2.
Nat Commun ; 12(1): 6223, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1510592

ABSTRACT

In 2016 the World Health Organization set the goal of eliminating hepatitis B globally by 2030. Horizontal transmission has been greatly reduced in most countries by scaling up coverage of the infant HBV vaccine series, and vertical transmission is therefore becoming increasingly dominant. Here we show that scaling up timely hepatitis B birth dose vaccination to 90% of new-borns in 110 low- and middle-income countries by 2030 could prevent 710,000 (580,000 to 890,000) deaths in the 2020 to 2030 birth cohorts compared to status quo, with the greatest benefits in Africa. Maintaining this could lead to elimination by 2030 in the Americas, but not before 2059 in Africa. Drops in coverage due to disruptions in 2020 may lead to 15,000 additional deaths, mostly in South-East Asia and the Western Pacific. Delays in planned scale-up could lead to an additional 580,000 deaths globally in the 2020 to 2030 birth cohorts.


Subject(s)
Hepatitis B Vaccines/administration & dosage , Hepatitis B/prevention & control , Africa/epidemiology , Americas/epidemiology , Asia, Southeastern/epidemiology , Disease Eradication/statistics & numerical data , Female , Hepatitis B/epidemiology , Hepatitis B/mortality , Hepatitis B/virology , Hepatitis Viruses/genetics , Hepatitis Viruses/immunology , Humans , Infant , Infant, Newborn , Male , Vaccination , World Health Organization
3.
PLoS Med ; 18(10): e1003831, 2021 10.
Article in English | MEDLINE | ID: covidwho-1477511

ABSTRACT

BACKGROUND: UNAIDS has established new program targets for 2025 to achieve the goal of eliminating AIDS as a public health threat by 2030. This study reports on efforts to use mathematical models to estimate the impact of achieving those targets. METHODS AND FINDINGS: We simulated the impact of achieving the targets at country level using the Goals model, a mathematical simulation model of HIV epidemic dynamics that includes the impact of prevention and treatment interventions. For 77 high-burden countries, we fit the model to surveillance and survey data for 1970 to 2020 and then projected the impact of achieving the targets for the period 2019 to 2030. Results from these 77 countries were extrapolated to produce estimates for 96 others. Goals model results were checked by comparing against projections done with the Optima HIV model and the AIDS Epidemic Model (AEM) for selected countries. We included estimates of the impact of societal enablers (access to justice and law reform, stigma and discrimination elimination, and gender equality) and the impact of Coronavirus Disease 2019 (COVID-19). Results show that achieving the 2025 targets would reduce new annual infections by 83% (71% to 86% across regions) and AIDS-related deaths by 78% (67% to 81% across regions) by 2025 compared to 2010. Lack of progress on societal enablers could endanger these achievements and result in as many as 2.6 million (44%) cumulative additional new HIV infections and 440,000 (54%) more AIDS-related deaths between 2020 and 2030 compared to full achievement of all targets. COVID-19-related disruptions could increase new HIV infections and AIDS-related deaths by 10% in the next 2 years, but targets could still be achieved by 2025. Study limitations include the reliance on self-reports for most data on behaviors, the use of intervention effect sizes from published studies that may overstate intervention impacts outside of controlled study settings, and the use of proxy countries to estimate the impact in countries with fewer than 4,000 annual HIV infections. CONCLUSIONS: The new targets for 2025 build on the progress made since 2010 and represent ambitious short-term goals. Achieving these targets would bring us close to the goals of reducing new HIV infections and AIDS-related deaths by 90% between 2010 and 2030. By 2025, global new infections and AIDS deaths would drop to 4.4 and 3.9 per 100,000 population, and the number of people living with HIV (PLHIV) would be declining. There would be 32 million people on treatment, and they would need continuing support for their lifetime. Incidence for the total global population would be below 0.15% everywhere. The number of PLHIV would start declining by 2023.


Subject(s)
Disease Eradication , Global Health , Goals , HIV Infections/prevention & control , Models, Biological , Models, Theoretical , Public Health , Acquired Immunodeficiency Syndrome/epidemiology , Acquired Immunodeficiency Syndrome/prevention & control , Acquired Immunodeficiency Syndrome/therapy , Adolescent , Adult , COVID-19 , Cause of Death , Epidemics , Female , HIV Infections/epidemiology , HIV Infections/therapy , Humans , Incidence , Male , SARS-CoV-2 , Social Determinants of Health , United Nations , Young Adult
4.
Elife ; 102021 07 13.
Article in English | MEDLINE | ID: covidwho-1308531

ABSTRACT

Background: Vaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries. Methods: Twenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios. Results: We estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases. Conclusions: This study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future. Funding: VIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.


Subject(s)
Bacterial Infections/prevention & control , Bacterial Vaccines/therapeutic use , COVID-19 , Global Health , Models, Biological , SARS-CoV-2 , Bacterial Infections/epidemiology , Humans
5.
Clin Infect Dis ; 73(11): e4047-e4057, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1066276

ABSTRACT

BACKGROUND: Emerging evidence suggests ethnic minorities are disproportionately affected by coronavirus disease 2019 (COVID-19). Detailed clinical analyses of multicultural hospitalized patient cohorts remain largely undescribed. METHODS: We performed regression, survival, and cumulative competing risk analyses to evaluate factors associated with mortality in patients admitted for COVID-19 in 3 large London hospitals between 25 February and 5 April, censored as of 1 May 2020. RESULTS: Of 614 patients (median age, 69 [interquartile range, 25] years) and 62% male), 381 (62%) were discharged alive, 178 (29%) died, and 55 (9%) remained hospitalized at censoring. Severe hypoxemia (adjusted odds ratio [aOR], 4.25 [95% confidence interval {CI}, 2.36-7.64]), leukocytosis (aOR, 2.35 [95% CI, 1.35-4.11]), thrombocytopenia (aOR [1.01, 95% CI, 1.00-1.01], increase per 109 decrease), severe renal impairment (aOR, 5.14 [95% CI, 2.65-9.97]), and low albumin (aOR, 1.06 [95% CI, 1.02-1.09], increase per gram decrease) were associated with death. Forty percent (n = 244) were from black, Asian, and other minority ethnic (BAME) groups, 38% (n = 235) were white, and ethnicity was unknown for 22% (n = 135). BAME patients were younger and had fewer comorbidities. Although the unadjusted odds of death did not differ by ethnicity, when adjusting for age, sex, and comorbidities, black patients were at higher odds of death compared to whites (aOR, 1.69 [95% CI, 1.00-2.86]). This association was stronger when further adjusting for admission severity (aOR, 1.85 [95% CI, 1.06-3.24]). CONCLUSIONS: BAME patients were overrepresented in our cohort; when accounting for demographic and clinical profile of admission, black patients were at increased odds of death. Further research is needed into biologic drivers of differences in COVID-19 outcomes by ethnicity.


Subject(s)
COVID-19 , Aged , Cohort Studies , Female , Humans , London/epidemiology , Male , Retrospective Studies , SARS-CoV-2 , State Medicine
6.
Sci Rep ; 11(1): 2455, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1054055

ABSTRACT

Patients with strong clinical features of COVID-19 with negative real time polymerase chain reaction (RT-PCR) SARS-CoV-2 testing are not currently included in official statistics. The scale, characteristics and clinical relevance of this group are not well described. We performed a retrospective cohort study in two large London hospitals to characterize the demographic, clinical, and hospitalization outcome characteristics of swab-negative clinical COVID-19 patients. We found 1 in 5 patients with a negative swab and clinical suspicion of COVID-19 received a clinical diagnosis of COVID-19 within clinical documentation, discharge summary or death certificate. We compared this group to a similar swab positive cohort and found similar demographic composition, symptomology and laboratory findings. Swab-negative clinical COVID-19 patients had better outcomes, with shorter length of hospital stay, reduced need for > 60% supplementary oxygen and reduced mortality. Patients with strong clinical features of COVID-19 that are swab-negative are a common clinical challenge. Health systems must recognize and plan for the management of swab-negative patients in their COVID-19 clinical management, infection control policies and epidemiological assessments.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Adult , COVID-19/epidemiology , COVID-19/genetics , COVID-19/virology , COVID-19 Testing/trends , Cohort Studies , False Negative Reactions , Female , Hospitalization/statistics & numerical data , Hospitals , Humans , London/epidemiology , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Specimen Handling
7.
Lancet HIV ; 7(9): e629-e640, 2020 09.
Article in English | MEDLINE | ID: covidwho-695906

ABSTRACT

BACKGROUND: The COVID-19 pandemic could lead to disruptions to provision of HIV services for people living with HIV and those at risk of acquiring HIV in sub-Saharan Africa, where UNAIDS estimated that more than two-thirds of the approximately 38 million people living with HIV resided in 2018. We aimed to predict the potential effects of such disruptions on HIV-related deaths and new infections in sub-Saharan Africa. METHODS: In this modelling study, we used five well described models of HIV epidemics (Goals, Optima HIV, HIV Synthesis, an Imperial College London model, and Epidemiological MODeling software [EMOD]) to estimate the effect of various potential disruptions to HIV prevention, testing, and treatment services on HIV-related deaths and new infections in sub-Saharan Africa lasting 6 months over 1 year from April 1, 2020. We considered scenarios in which disruptions affected 20%, 50%, and 100% of the population. FINDINGS: A 6-month interruption of supply of antiretroviral therapy (ART) drugs across 50% of the population of people living with HIV who are on treatment would be expected to lead to a 1·63 times (median across models; range 1·39-1·87) increase in HIV-related deaths over a 1-year period compared with no disruption. In sub-Saharan Africa, this increase amounts to a median excess of HIV deaths, across all model estimates, of 296 000 (range 229 023-420 000) if such a high level of disruption occurred. Interruption of ART would increase mother-to-child transmission of HIV by approximately 1·6 times. Although an interruption in the supply of ART drugs would have the largest impact of any potential disruptions, effects of poorer clinical care due to overstretched health facilities, interruptions of supply of other drugs such as co-trimoxazole, and suspension of HIV testing would all have a substantial effect on population-level mortality (up to a 1·06 times increase in HIV-related deaths over a 1-year period due to disruptions affecting 50% of the population compared with no disruption). Interruption to condom supplies and peer education would make populations more susceptible to increases in HIV incidence, although physical distancing measures could lead to reductions in risky sexual behaviour (up to 1·19 times increase in new HIV infections over a 1-year period if 50% of people are affected). INTERPRETATION: During the COVID-19 pandemic, the primary priority for governments, donors, suppliers, and communities should focus on maintaining uninterrupted supply of ART drugs for people with HIV to avoid additional HIV-related deaths. The provision of other HIV prevention measures is also important to prevent any increase in HIV incidence. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Anti-HIV Agents/supply & distribution , Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , HIV Infections/epidemiology , Models, Statistical , Pandemics , Pneumonia, Viral/epidemiology , Africa South of the Sahara/epidemiology , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , COVID-19 , Condoms/supply & distribution , Coronavirus Infections/mortality , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Global Health/trends , HIV Infections/mortality , HIV Infections/transmission , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , Humans , Incidence , Infant, Newborn , Infectious Disease Transmission, Vertical/prevention & control , Infectious Disease Transmission, Vertical/statistics & numerical data , Male , Pneumonia, Viral/mortality , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Sexual Behavior/psychology , Sexual Behavior/statistics & numerical data , Survival Analysis
8.
EClinicalMedicine ; 26: 100483, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-701880

ABSTRACT

BACKGROUND: There is concern that the COVID-19 pandemic could severely disrupt HIV services in sub-Saharan Africa. However, it is difficult to determine priorities for maintaining different elements of existing HIV services given widespread uncertainty. METHODS: We explore the impact of disruptions on HIV outcomes in South Africa, Malawi, Zimbabwe, and Uganda using a mathematical model, examine how impact is affected by model assumptions, and compare potential HIV deaths to those that may be caused by COVID-19 in the same settings. FINDINGS: The most important determinant of HIV-related mortality is an interruption to antiretroviral treatment (ART) supply. A three-month interruption for 40% of those on ART could cause a similar number of additional deaths as those that might be saved from COVID-19 through social distancing. An interruption for more than 6-90% of individuals on ART for nine months could cause the number of HIV deaths to exceed the number of COVID-19 deaths, depending on the COVID-19 projection. However, if ART supply is maintained, but new treatment, voluntary medical male circumcision, and pre-exposure prophylaxis initiations cease for 3 months and condom use is reduced, increases in HIV deaths would be limited to <2% over five years, although this could still be accompanied by a 7% increase in new HIV infections. INTERPRETATION: HIV deaths could increase substantially during the COVID-19 pandemic under reasonable worst-case assumptions about interruptions to HIV services. It is a priority in high-burden countries to ensure continuity of ART during the pandemic. FUNDING: Bill & Melinda Gates Foundation.

SELECTION OF CITATIONS
SEARCH DETAIL