Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
Environmental Science: Nano ; 2022.
Article in English | Web of Science | ID: covidwho-2083149


For the first time, we exploited the antiviral and antibacterial properties of Ag NPs stabilised by quaternized hydroxyethyl cellulose (Ag-HEC) against SARS-CoV-2 and Escherichia coli through an eco-friendly process at room temperature in three different environments: 1) water, where Ag was dispersed as a nanosol, 2) textiles, where Ag was applied as a coating, and 3) hydrogel where Ag is embedded. The antiviral performance of Ag-HEC nanosols was quantified through the selectivity index (SI), defined as the ratio between 50% cytotoxic and inhibitory concentration, in order to evaluate the ability to be active in a concentration range below the cytotoxicity value. The collected results pointed out an actual enhanced risk/benefit profile of Ag-HEC NPs with respect to chloroquine, with an SI of 22.2 and 8.4, respectively. Antibacterial and antiviral activities of Ag-HEC NPs immobilized on textiles or mucosa-like hydrogels were also assessed and their efficacy in potential application as protective clothing or nasal molecular masks was verified. This work demonstrated that a modern, safe and sustainable design allows traditional colloidal silver-based technologies to be efficiently exploited for a broad spectrum of antimicrobial solutions against bacterial and viral infections.