Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vaccine ; 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1882618

ABSTRACT

The mass inoculation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine to induce herd immunity is one of the most effective measures to fight COVID-19. The vaccination of pregnant women cannot only avoid or reduce the probability of infectious diseases, but also offers the most effective and direct protection for neonates by means of passive immunization. However, there is no randomized clinical data to ascertain whether the inactivated vaccination of pregnant women or women of childbearing age can affect conception and the fetus. We found that human angiotensin-converting enzyme 2 (hACE2) mice that were vaccinated with two doses of CoronaVac (an inactivated SARS-CoV-2 vaccine) before and during pregnancy exhibited normal weight changes and reproductive performance indices; the physical development of their offspring was also normal. Following intranasal inoculation with SARS-CoV-2, pregnant mice in the immunization group all survived; reproductive performance indices and the physical development of offspring were all normal. In contrast, mice in the non-immunization group all died before delivery. Analyses showed that inoculation of CoronaVac was safe and did not exert any significant effects on pregnancy, lactation, or the growth of offspring in hACE2 mice. Vaccination effectively protected the pregnant mice against SARS-CoV-2 infection and had no adverse effects on the growth and development of the offspring, thus suggesting that inoculation with an inactivated SARS-CoV-2 vaccine may be an effective strategy to prevent infection in pregnant women.

2.
Vet Pathol ; 59(4): 602-612, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1662392

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes severe viral pneumonia and is associated with a high fatality rate. A substantial proportion of patients infected by SARS-CoV-2 suffer from mild hyposmia to complete loss of olfactory function, resulting in anosmia. However, the pathogenesis of the olfactory dysfunction and comparative pathology of upper respiratory infections with SARS-CoV-2 are unknown. We describe the histopathological, immunohistochemical, and in situ hybridization findings from rodent models of SARS-CoV-2 infection. The main histopathological findings in the olfactory epithelia of K8-hACE2 Tg mice, hACE2 Tg mice, and hamsters were varying degrees of inflammatory lesions, including disordered arrangement, necrosis, exfoliation, and macrophage infiltration of the olfactory epithelia, and inflammatory exudation. On the basis of these observations, the nasal epithelia of these rodent models appeared to develop moderate, mild, and severe rhinitis, respectively. Correspondingly, SARS-CoV-2 viral RNA and antigen were mainly identified in the olfactory epithelia and lamina propria. Moreover, viral RNA was abundant in the cerebrum of K18-hACE2 Tg mice, including the olfactory bulb. The K8-hACE2 Tg mouse, hACE2 Tg mouse, and hamster models could be used to investigate the pathology of SARS-CoV-2 infection in the upper respiratory tract and central nervous system. These models could help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments.


Subject(s)
COVID-19 , Rodent Diseases , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/veterinary , Cricetinae , Disease Models, Animal , Lung/pathology , Melphalan , Mice , Mice, Transgenic , Nasal Mucosa , Peptidyl-Dipeptidase A/genetics , RNA, Viral , Rodent Diseases/pathology , SARS-CoV-2 , gamma-Globulins
3.
Signal Transduct Target Ther ; 7(1): 29, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1655546

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted on mink farms between minks and humans in many countries. However, the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown. Here, we demonstrated that minks were largely permissive to SARS-CoV-2, characterized by severe and diffuse alveolar damage, and lasted at least 14 days post inoculation (dpi). We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular, hepatobiliary, urinary, endocrine, digestive, and immune systems. The viral protein partially co-localized with activated Mac-2+ macrophages throughout the body. Moreover, we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks, especially at 6 dpi, and were similar to that of patients with severe and fatal COVID-19. Particularly, altered metabolic pathways, abnormal digestion, and absorption of vitamins, lipids, cholesterol, steroids, amino acids, and proteins, consistent with hepatic dysfunction, highlight metabolic and immune dysregulation. Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation. Melatonin, which has significant anti-inflammatory and immunomodulating effects, was significantly downregulated at 6 dpi and displayed potential as a targeted medicine. Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients, delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies, vaccine research, and potential biomarkers.


Subject(s)
COVID-19/metabolism , Lung/metabolism , Macrophages, Alveolar/metabolism , Metabolome , Mink/virology , SARS-CoV-2/metabolism , Amino Acids/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/genetics , COVID-19/pathology , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/virology , Melatonin/metabolism , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Sterols/metabolism , Virulence , Virus Replication/genetics
4.
Signal Transduct Target Ther ; 6(1): 337, 2021 09 06.
Article in English | MEDLINE | ID: covidwho-1402050

ABSTRACT

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.


Subject(s)
Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Tight Junctions/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basement Membrane/pathology , Basement Membrane/virology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/virology , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Disease Models, Animal , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Tight Junctions/genetics , Tight Junctions/pathology , Tight Junctions/virology , Vero Cells
5.
Animal Model Exp Med ; 4(1): 2-15, 2021 03.
Article in English | MEDLINE | ID: covidwho-1122088

ABSTRACT

Background: Cardiovascular diseases (CVDs) and diabetes mellitus (DM) are top two chronic comorbidities that increase the severity and mortality of COVID-19. However, how SARS-CoV-2 alters the progression of chronic diseases remain unclear. Methods: We used adenovirus to deliver h-ACE2 to lung to enable SARS-CoV-2 infection in mice. SARS-CoV-2's impacts on pathogenesis of chronic diseases were studied through histopathological, virologic and molecular biology analysis. Results: Pre-existing CVDs resulted in viral invasion, ROS elevation and activation of apoptosis pathways contribute myocardial injury during SARS-CoV-2 infection. Viral infection increased fasting blood glucose and reduced insulin response in DM model. Bone mineral density decreased shortly after infection, which associated with impaired PI3K/AKT/mTOR signaling. Conclusion: We established mouse models mimicked the complex pathological symptoms of COVID-19 patients with chronic diseases. Pre-existing diseases could impair the inflammatory responses to SARS-CoV-2 infection, which further aggravated the pre-existing diseases. This work provided valuable information to better understand the interplay between the primary diseases and SARS-CoV-2 infection.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Cardiovascular Diseases/complications , Cardiovascular Diseases/physiopathology , Diabetes Complications/physiopathology , Animals , Comorbidity , Diabetes Mellitus , Disease Models, Animal , Male , Mice , SARS-CoV-2
6.
J Infect Dis ; 223(8): 1313-1321, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1091239

ABSTRACT

Domestic cats, an important companion animal, can be infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This has aroused concern regarding the ability of domestic cats to spread the virus that causes coronavirus disease 2019. We systematically demonstrated the pathogenesis and transmissibility of SARS-CoV-2 in cats. Serial passaging of the virus between cats dramatically attenuated the viral transmissibility, likely owing to variations of the amino acids in the receptor-binding domain sites of angiotensin-converting enzyme 2 between humans and cats. These findings provide insight into the transmissibility of SARS-CoV-2 in cats and information for protecting the health of humans and cats.


Subject(s)
COVID-19/transmission , COVID-19/veterinary , SARS-CoV-2/pathogenicity , Amino Acids/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Cats , Cell Line , Chlorocebus aethiops , Female , Humans , Male , Vero Cells
7.
Front Microbiol ; 11: 618891, 2020.
Article in English | MEDLINE | ID: covidwho-1054989

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the world and impacted global healthcare systems. For clinical patients, COVID-19 not only induces pulmonary lesions but also affects extrapulmonary organs. An ideal animal model that mimics COVID-19 in humans in terms of the induced systematic lesions is urgently needed. Here, we report that Syrian hamster is highly permissive to SARS-CoV-2 and exhibit diffuse alveolar damage and induced extrapulmonary multi-organs damage, including spleen, lymph nodes, different segments of alimentary tract, kidney, adrenal gland, ovary, vesicular gland and prostate damage, at 3-7 days post inoculation (dpi), based on qRT-PCR, in situ hybridization and immunohistochemistry detection. Notably, the adrenal gland is a novel target organ, with abundant viral RNA and antigen expression detected, accompanied by focal to diffuse inflammation. Additionally, viral RNA was also detected in the corpus luteum of the ovary, vesicular gland and prostate. Focal lesions in liver, gallbladder, myocardium, and lymph nodes were still present at 18 dpi, suggesting potential damage after disease. Our findings illustrate systemic histological observations and the viral RNA and antigen distribution in infected hamsters during disease and convalescence to recapitulate those observed in humans with COVID-19, providing helpful data to the pathophysiologic characterization of SARS-CoV-2-induced systemic disease and the development of effective treatment strategies.

8.
Cell ; 183(4): 1013-1023.e13, 2020 11 12.
Article in English | MEDLINE | ID: covidwho-756810

ABSTRACT

Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Cryoelectron Microscopy , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Female , Lung/pathology , Male , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
9.
Nat Commun ; 11(1): 4400, 2020 09 02.
Article in English | MEDLINE | ID: covidwho-744370

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmitted through the respiratory route, but potential extra-respiratory routes of SARS-CoV-2 transmission remain uncertain. Here we inoculated five rhesus macaques with 1 × 106 TCID50 of SARS-CoV-2 conjunctivally (CJ), intratracheally (IT), and intragastrically (IG). Nasal and throat swabs collected from CJ and IT had detectable viral RNA at 1-7 days post-inoculation (dpi). Viral RNA was detected in anal swabs from only the IT group at 1-7 dpi. Viral RNA was undetectable in tested swabs and tissues after intragastric inoculation. The CJ infected animal had a higher viral load in the nasolacrimal system than the IT infected animal but also showed mild interstitial pneumonia, suggesting distinct virus distributions. This study shows that infection via the conjunctival route is possible in non-human primates; further studies are necessary to compare the relative risk and pathogenesis of infection through these different routes in more detail.


Subject(s)
Betacoronavirus/physiology , Conjunctiva/virology , Coronavirus Infections/virology , Disease Models, Animal , Pneumonia, Viral/virology , Animals , Antibodies, Viral , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Intestine, Large/virology , Lung/pathology , Lung/virology , Macaca mulatta , Male , Nasal Cavity/virology , Pandemics , Pneumonia, Viral/pathology , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2 , Trachea/virology , Viral Load , Virus Replication
10.
J Infect Dis ; 222(4): 551-555, 2020 07 23.
Article in English | MEDLINE | ID: covidwho-704462

ABSTRACT

We simulated 3 transmission modes, including close-contact, respiratory droplets and aerosol routes, in the laboratory. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be highly transmitted among naive human angiotensin-converting enzyme 2 (hACE2) mice via close contact because 7 of 13 naive hACE2 mice were SARS-CoV-2 antibody seropositive 14 days after being introduced into the same cage with 3 infected-hACE2 mice. For respiratory droplets, SARS-CoV-2 antibodies from 3 of 10 naive hACE2 mice showed seropositivity 14 days after introduction into the same cage with 3 infected-hACE2 mice, separated by grids. In addition, hACE2 mice cannot be experimentally infected via aerosol inoculation until continued up to 25 minutes with high viral concentrations.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Aerosols , Anal Canal/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Chlorocebus aethiops , Female , Humans , Immunoglobulin G/blood , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/genetics , Pharynx/virology , RNA, Viral/isolation & purification , Respiratory System/virology , Risk , SARS-CoV-2 , Specific Pathogen-Free Organisms , Time Factors , Vero Cells , Viral Load , Weight Loss
11.
Science ; 369(6505): 818-823, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-631755

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. It is unclear whether convalescing patients have a risk of reinfection. We generated a rhesus macaque model of SARS-CoV-2 infection that was characterized by interstitial pneumonia and systemic viral dissemination mainly in the respiratory and gastrointestinal tracts. Rhesus macaques reinfected with the identical SARS-CoV-2 strain during the early recovery phase of the initial SARS-CoV-2 infection did not show detectable viral dissemination, clinical manifestations of viral disease, or histopathological changes. Comparing the humoral and cellular immunity between primary infection and rechallenge revealed notably enhanced neutralizing antibody and immune responses. Our results suggest that primary SARS-CoV-2 exposure protects against subsequent reinfection in rhesus macaques.


Subject(s)
Betacoronavirus , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Anal Canal/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , B-Lymphocyte Subsets/immunology , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Disease Models, Animal , Host Microbial Interactions , Immunity, Cellular , Immunity, Humoral , Lung/diagnostic imaging , Lung/immunology , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/virology , Macaca mulatta , Nasopharynx/virology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Recurrence , SARS-CoV-2 , T-Lymphocyte Subsets/immunology , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL