Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
ERJ open research ; 2021.
Article in English | EuropePMC | ID: covidwho-1610380

ABSTRACT

Due to the large number of patients with severe COVID-19, many were treated outside of the traditional walls of the ICU, and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside of the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the ISARIC WHO COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or non-invasive mechanical ventilation, high-flow nasal cannula, inotropes, and vasopressors. A logistic Generalised Additive Model was used to compare clinical outcomes among patients admitted and not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median [IQR], 67 years [55, 78]), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 days (5–19) and was longer in patients admitted to an ICU than in those that were cared for outside of ICU (12 [6–23] versus 8 [4–15] days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% [5797/18831] versus 39.0% [7532/19295], p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR:0.70, 95%CI: 0.65-0.75, p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside of an ICU.

2.
Wellcome Open Res ; 6: 159, 2021.
Article in English | MEDLINE | ID: covidwho-1594307

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) has been responsible for over 3.4 million deaths globally and over 25 million cases in India. As part of the response, India imposed a nation-wide lockdown and prioritized COVID-19 care in hospitals and intensive care units (ICUs). Leveraging data from the Indian Registry of IntenSive care, we sought to understand the impact of the COVID-19 pandemic on critical care service utilization, case-mix, and clinical outcomes in non-COVID ICUs.  Methods: We included all consecutive patients admitted between 1 st October 2019 and 27 th September 2020. Data were extracted from the registry database and included patients admitted to the non-COVID or general ICUs at each of the sites. Outcomes included measures of resource-availability, utilisation, case-mix, acuity, and demand for ICU beds. We used a Mann-Whitney test to compare the pre-pandemic period (October 2019 - February 2020) to the pandemic period (March-September 2020). In addition, we also compared the period of intense lockdown (March-May 31 st 2020) with the pre-pandemic period. Results: There were 3424 patient encounters in the pre-pandemic period and 3524 encounters in the pandemic period. Comparing these periods, weekly admissions declined (median [Q1 Q3] 160 [145,168] to 113 [98.5,134]; p=0.00002); unit turnover declined (median [Q1 Q3] 12.1 [11.32,13] to 8.58 [7.24,10], p<0.00001), and APACHE II score increased (median [Q1 Q3] 19 [19,20] to 21 [20,22] ; p<0.00001). Unadjusted ICU mortality increased (9.3% to 11.7%, p=0.01519) and the length of ICU stay was similar (median [Q1 Q3] 2.11 [2, 2] vs. 2.24 [2, 3] days; p=0.15096). Conclusion: Our registry-based analysis of the impact of COVID-19 on non-COVID critical care demonstrates significant disruptions to healthcare utilization during the pandemic and an increase in the severity of illness.

3.
Preprint in English | EuropePMC | ID: ppcovidwho-294249

ABSTRACT

Background: Evidence on the association between HIV infection and the risk of poor clinical outcomes in people with COVID-19 remains inconclusive. The World Health Organization (WHO) has established a Global Clinical Platform aimed to assess clinical features and risk factors for severe/fatal COVID-19 among individuals hospitalized with suspected or confirmed SARS-CoV-2 infection.<br><br>Methods: Between January 2020-June 2021 anonymized individual-level clinical data from 338,566 patients hospitalized in 38 countries were reported to the WHO Clinical Platform using a standardized set of variables including demographics, vital signs, underlying conditions, laboratory values, therapeutics and medical care received, and clinical outcomes. Descriptive and regression analyses whether HIV status was a risk factor for severity at admission and in-hospital mortality among people hospitalized for COVID-19.<br><br>Findings: Of 197,479 patients reporting HIV status, 8.6% (16,955) were living with HIV (PLHIV), and 94.6% (16,283) were from Africa. Among those, 37.1% were male, mean age was 45.5 years, 38.3% were admitted with severe or critical illness and 24.7% died in-hospital. Among 10,166 individuals with information about antiretroviral therapy (ART) status, 91.5% were on ART. When compared to those without HIV, PLHIV had 15% increased odds of severe/critical presentation (aOR=1.15, 95%CI 1.10–1.20) and 38% more likely to die in-hospital (aHR=1.38, 95%CI 1.34-1.41). Among PLHIV, being male, age 45-75 years, having chronic cardiac disease or hypertension increased the odds of severe/critical COVID-19;male sex, age>18 years, having diabetes, hypertension, malignancy, TB, or chronic kidney disease increased the risk of in-hospital mortality.<br><br>Interpretation: In this sample of hospitalized people contributing data to the WHO Global Clinical Platform for COVID-19, HIV was a significant independent risk factor for both severe/critical COVID-19 at admission and in-hospital mortality. These findings have informed the WHO COVID-19 Clinical Management Guidelines and SAGE recommendations around COVID-19 vaccination prioritization among vulnerable groups.<br><br>Funding Information: None.<br><br>Declaration of Interests: R.H. received funding from the Wellcome Trust, CIHR UKRI/MRC and ICODA. None of the other authors have any conflicts of interest to disclose.<br><br>Ethics Approval Statement: The analysis plan25 was submitted to the WHO Ethical Review Committee which granted a waiver from ethical review clearance as this was passive, anonymized clinical surveillance. Ethical clearance was obtained, where necessary, by relevant institutional or national bodies.<br><br>

4.
JAMA ; 326(17): 1690-1702, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1525402

ABSTRACT

Importance: The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. Objective: To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. Interventions: The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). Main Outcomes and Measures: The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. Results: Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11 secondary outcomes. Serious adverse events were reported in 3.0% (32/1075) of participants in the convalescent plasma group and in 1.3% (12/905) of participants in the no convalescent plasma group. Conclusions and Relevance: Among critically ill adults with confirmed COVID-19, treatment with 2 units of high-titer, ABO-compatible convalescent plasma had a low likelihood of providing improvement in the number of organ support-free days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19/therapy , ABO Blood-Group System , Adult , Aged , Critical Illness/therapy , Female , Hospital Mortality , Humans , Immunization, Passive , Length of Stay , Logistic Models , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Treatment Failure , Vasoconstrictor Agents/therapeutic use
5.
Preprint in English | EuropePMC | ID: ppcovidwho-292198

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) has been responsible for over 3.4 million deaths globally and over 25 million cases in India. As part of the response, India imposed a nation-wide lockdown and prioritized COVID-19 care in hospitals and intensive care units (ICUs). Leveraging data from the Indian Registry of IntenSive care, we sought to understand the impact of the COVID-19 pandemic on critical care service utilization, case-mix, and clinical outcomes in non-COVID ICUs.  Methods: We included all consecutive patients admitted between 1 st October 2019 and 27 th September 2020. Data were extracted from the registry database and included patients admitted to the non-COVID or general ICUs at each of the sites. Outcomes included measures of resource-availability, utilisation, case-mix, acuity, and demand for ICU beds. We used a Mann-Whitney test to compare the pre-pandemic period (October 2019 - February 2020) to the pandemic period (March-September 2020). In addition, we also compared the period of intense lockdown (March-May 31 st 2020) with the pre-pandemic period. Results: There were 3424 patient encounters in the pre-pandemic period and 3524 encounters in the pandemic period. Comparing these periods, weekly admissions declined (median [Q1 Q3] 160 [145,168] to 113 [98.5,134];p<0.001);unit turnover declined (median [Q1 Q3] 12.1 [11.32,13] to 8.58 [7.24,10], p<0.001), and APACHE II score increased (median [Q1 Q3] 19 [19,20] to 21 [20,22] ;p<0.001). Unadjusted ICU mortality increased (9.3% to 11.7%, p=0.015) and the length of ICU stay was similar (median [Q1 Q3] 2.11 [2, 2] vs. 2.24 [2, 3] days;p=0.151). Conclusion: Our registry-based analysis of the impact of COVID-19 on non-COVID critical care demonstrates significant disruptions to healthcare utilization during the pandemic and an increase in the severity of illness.

7.
Intensive Care Med ; 47(8): 867-886, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1305144

ABSTRACT

PURPOSE: To study the efficacy of lopinavir-ritonavir and hydroxychloroquine in critically ill patients with coronavirus disease 2019 (COVID-19). METHODS: Critically ill adults with COVID-19 were randomized to receive lopinavir-ritonavir, hydroxychloroquine, combination therapy of lopinavir-ritonavir and hydroxychloroquine or no antiviral therapy (control). The primary endpoint was an ordinal scale of organ support-free days. Analyses used a Bayesian cumulative logistic model and expressed treatment effects as an adjusted odds ratio (OR) where an OR > 1 is favorable. RESULTS: We randomized 694 patients to receive lopinavir-ritonavir (n = 255), hydroxychloroquine (n = 50), combination therapy (n = 27) or control (n = 362). The median organ support-free days among patients in lopinavir-ritonavir, hydroxychloroquine, and combination therapy groups was 4 (- 1 to 15), 0 (- 1 to 9) and-1 (- 1 to 7), respectively, compared to 6 (- 1 to 16) in the control group with in-hospital mortality of 88/249 (35%), 17/49 (35%), 13/26 (50%), respectively, compared to 106/353 (30%) in the control group. The three interventions decreased organ support-free days compared to control (OR [95% credible interval]: 0.73 [0.55, 0.99], 0.57 [0.35, 0.83] 0.41 [0.24, 0.72]), yielding posterior probabilities that reached the threshold futility (≥ 99.0%), and high probabilities of harm (98.0%, 99.9% and > 99.9%, respectively). The three interventions reduced hospital survival compared with control (OR [95% CrI]: 0.65 [0.45, 0.95], 0.56 [0.30, 0.89], and 0.36 [0.17, 0.73]), yielding high probabilities of harm (98.5% and 99.4% and 99.8%, respectively). CONCLUSION: Among critically ill patients with COVID-19, lopinavir-ritonavir, hydroxychloroquine, or combination therapy worsened outcomes compared to no antiviral therapy.


Subject(s)
COVID-19 , Ritonavir , Adult , Antiviral Agents/therapeutic use , Bayes Theorem , COVID-19/drug therapy , Critical Illness , Drug Combinations , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2
8.
Indian J Crit Care Med ; 25(4): 374-381, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1197615

ABSTRACT

Purpose: The impact of disruption to the care of non-coronavirus disease (COVID) patients (COVID collateral damage syndrome-CCDS) is largely unknown in resource-limited settings. We investigated CCDS as perceived by healthcare workers (HCWs) providing acute and critical care services in India. Materials and methods: A clinician and nurse codesigned and validated an internet-based survey, which was disseminated to HCWs using a multiple frame sampling technique. Results: Responses were received from 468 HCWs (completion rate 84%); at the time of the survey, 48% were working in critical care, 41% aged 30-40 years, and 53% represented public institutions. Respondents perceived a decrease in service utilization and disruption to time-sensitive acute interventions (60.1% and 40.8%, respectively), with fear of infection (score, 63.0; standard deviation (SD), 31.8) and restrictions due to lockdown (61.4; SD 32.5) being cited as the causes of service disruption. Being overwhelmed or lack of protective equipment was perceived to contribute less to CCDS. Insistence on COVID test results X 2 (p = 0.02) and duty-avoidance (p < 0.01) was perceived as significant causes for CCDS by HCWs from private hospitals and those in leadership roles, respectively. Conclusions: Fear of infection and the effect of lockdown were perceived as important contributors to CCDS resulting in disruption to services and decreased service utilization. Perceptions were influenced by HCWs' role and hospital organizational structure. How to cite this article: Tripathy S, Vijayaraghavan BKT, Panigrahi MK, Shetty AP, Haniffa R, Mishra RC, et al. Collateral Impact of the COVID-19 Pandemic on Acute Care of Non-COVID Patients: An Internet-based Survey of Critical Care and Emergency Personnel. Indian J Crit Care Med 2021;25(4):374-381.

10.
N Engl J Med ; 384(16): 1491-1502, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1101727

ABSTRACT

BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Receptors, Interleukin-6/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Respiration, Artificial
11.
Wellcome Open Res ; 6: 14, 2021.
Article in English | MEDLINE | ID: covidwho-1090165

ABSTRACT

The Randomized Embedded Multifactorial Adaptive Platform (REMAP-CAP) adapted for COVID-19) trial is a global adaptive platform trial of hospitalised patients with COVID-19. We describe implementation in three countries under the umbrella of the Wellcome supported Low and Middle Income Country (LMIC) critical  care network: Collaboration for Research, Implementation and Training in Asia (CCA). The collaboration sought to overcome known barriers to multi centre-clinical trials in resource-limited settings. Methods described focused on six aspects of implementation: i, Strengthening an existing community of practice; ii, Remote study site recruitment, training and support; iii, Harmonising the REMAP CAP- COVID trial with existing care processes; iv, Embedding REMAP CAP- COVID case report form into the existing CCA registry platform, v, Context specific adaptation and data management; vi, Alignment with existing pandemic and critical care research in the CCA. Methods described here may enable other LMIC sites to participate as equal partners in international critical care trials of urgent public health importance, both during this pandemic and beyond.

13.
JMIR Public Health Surveill ; 6(4): e21939, 2020 11 23.
Article in English | MEDLINE | ID: covidwho-940138

ABSTRACT

The COVID-19 pandemic has revealed limitations in real-time surveillance needed for responsive health care action in low- and middle-income countries (LMICs). The Pakistan Registry for Intensive CarE (PRICE) was adapted to enable International Severe Acute Respiratory and emerging Infections Consortium (ISARIC)-compliant real-time reporting of severe acute respiratory infection (SARI). The cloud-based common data model and standardized nomenclature of the registry platform ensure interoperability of data and reporting between regional and global stakeholders. Inbuilt analytics enable stakeholders to visualize individual and aggregate epidemiological, clinical, and operational data in real time. The PRICE system operates in 5 of 7 administrative regions of Pakistan. The same platform supports acute and critical care registries in eleven countries in South Asia and sub-Saharan Africa. ISARIC-compliant SARI reporting was successfully implemented by leveraging the existing PRICE infrastructure in all 49 member intensive care units (ICUs), enabling clinicians, operational leads, and established stakeholders with responsibilities for coordinating the pandemic response to access real-time information on suspected and confirmed COVID-19 cases (N=592 as of May 2020) via secure registry portals. ICU occupancy rates, use of ICU resources, mechanical ventilation, renal replacement therapy, and ICU outcomes were reported through registry dashboards. This information has facilitated coordination of critical care resources, health care worker training, and discussions on treatment strategies. The PRICE network is now being recruited to international multicenter clinical trials regarding COVID-19 management, leveraging the registry platform. Systematic and standardized reporting of SARI is feasible in LMICs. Existing registry platforms can be adapted for pandemic research, surveillance, and resource planning.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Cloud Computing/statistics & numerical data , Critical Care/methods , Registries/statistics & numerical data , Research , Developing Countries , Epidemiological Monitoring , Humans , Intensive Care Units , Pakistan , Pandemics
15.
JAMA ; 324(13): 1317-1329, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-739603

ABSTRACT

Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Coronavirus Infections/drug therapy , Hydrocortisone/administration & dosage , Pneumonia, Viral/drug therapy , Respiration, Artificial/statistics & numerical data , Adrenal Cortex Hormones/therapeutic use , Adult , Anti-Inflammatory Agents/adverse effects , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Early Termination of Clinical Trials , Female , Humans , Hydrocortisone/adverse effects , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , SARS-CoV-2 , Shock/drug therapy , Shock/etiology , Treatment Outcome
16.
Intensive Care Med ; 46(8): 1600-1602, 2020 08.
Article in English | MEDLINE | ID: covidwho-610701
SELECTION OF CITATIONS
SEARCH DETAIL
...