Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Med Klin Intensivmed Notfmed ; 2022 Jan 03.
Article in German | MEDLINE | ID: covidwho-1603177

ABSTRACT

BACKGROUND: Healthcare workers caring for coronavirus disease 2019 (COVID­19) patients are at an increased risk for a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The aim of this seroepidemiological study was to evaluate the risk of infection for employees at a tertiary care hospital. METHODS: Serological tests for antibodies against SARS-CoV­2 were carried out in a prospective cohort of employees directly involved in the care of COVID­19 patients every 2 weeks from March to July 2020 (1st wave). Antibody status was examined again between December 2020 and February 2021 (2nd wave). RESULTS: The seroprevalence of antibodies against SARS-CoV­2 was 5.1% at the end of the study in February 2021. The cumulative incidence was 3.9% after a median observation period of 261 days. CONCLUSION: We observed a low risk of SARS-CoV­2 infection comparable to that of the general population in the examined cohort of healthcare workers involved in the acute care of COVID­19 patients under the applied hygiene and protective measures.

3.
Artif Intell Life Sci ; 1: 100020, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1588542

ABSTRACT

Despite available vaccinations COVID-19 case numbers around the world are still growing, and effective medications against severe cases are lacking. In this work, we developed a machine learning model which predicts mortality for COVID-19 patients using data from the multi-center 'Lean European Open Survey on SARS-CoV-2-infected patients' (LEOSS) observational study (>100 active sites in Europe, primarily in Germany), resulting into an AUC of almost 80%. We showed that molecular mechanisms related to dementia, one of the relevant predictors in our model, intersect with those associated to COVID-19. Most notably, among these molecules was tyrosine kinase 2 (TYK2), a protein that has been patented as drug target in Alzheimer's Disease but also genetically associated with severe COVID-19 outcomes. We experimentally verified that anti-cancer drugs Sorafenib and Regorafenib showed a clear anti-cytopathic effect in Caco2 and VERO-E6 cells and can thus be regarded as potential treatments against COVID-19. Altogether, our work demonstrates that interpretation of machine learning based risk models can point towards drug targets and new treatment options, which are strongly needed for COVID-19.

4.
PLoS One ; 16(11): e0260213, 2021.
Article in English | MEDLINE | ID: covidwho-1526695

ABSTRACT

INTRODUCTION: Influenza is a major concern in hospitals, including the emergency department (ED), mainly because of a high risk for ED personnel to acquire and transmit the disease. Although influenza vaccination is recommended for health care workers, vaccination coverage is low. METHODS: This survey was conducted in the 2016/2017 and 2020/2021 influenza seasons. Questionnaires were sent to ED personnel in 12 hospitals in Bavaria, South-Eastern Germany. The response rates were 62% and 38% in 2016/2017 and 2020/2021, respectively. Data were compared between the two seasons as well as between vaccinated and not vaccinated respondents in 2020/2021. RESULTS: Significantly more ED personnel reported having been vaccinated in the 2020/2021 season. Factors associated with vaccination coverage (or the intention to get vaccinated) were profession (physician / medical student), having been vaccinated at least twice, the availability of an influenza vaccination on site (in the ED) as well as the COVID-19 pandemic. Additionally, significant differences in the assessment and evaluation of influenza, its vaccination side effects and ethical aspects were found between vaccinated and not vaccinated ED personnel in 2020/2021. Unvaccinated respondents estimated higher frequencies of almost all potential vaccination side effects, were less likely to accept lay-offs if employees would not come to work during an influenza pandemic and more likely to agree that work attendance should be an employee´s decision. Vaccinated participants instead, rather agreed that vaccination should be mandatory and were less likely to consider job changes in case of a mandatory vaccination policy. CONCLUSION: The COVID-19 pandemic might have contributed to a higher influenza vaccination rate among ED workers. Vaccination on site and interventions targeting the perception of influenza vaccination and its side effects may be most promising to increase the vaccination coverage among ED personnel.

5.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: covidwho-1518200

ABSTRACT

Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.


Subject(s)
Basigin/physiology , COVID-19/immunology , Dexamethasone/pharmacology , SARS-CoV-2 , T-Lymphocytes/metabolism , Adult , COVID-19/metabolism , Cyclophilin A/physiology , Fatty Acids/metabolism , Female , Humans , Male , Middle Aged , Mitochondria/pathology , Reactive Oxygen Species/metabolism
6.
Eur J Neurol ; 28(12): 3925-3937, 2021 12.
Article in English | MEDLINE | ID: covidwho-1515204

ABSTRACT

BACKGROUND AND PURPOSE: During acute coronavirus disease 2019 (COVID-19) infection, neurological signs, symptoms and complications occur. We aimed to assess their clinical relevance by evaluating real-world data from a multinational registry. METHODS: We analyzed COVID-19 patients from 127 centers, diagnosed between January 2020 and February 2021, and registered in the European multinational LEOSS (Lean European Open Survey on SARS-Infected Patients) registry. The effects of prior neurological diseases and the effect of neurological symptoms on outcome were studied using multivariate logistic regression. RESULTS: A total of 6537 COVID-19 patients (97.7% PCR-confirmed) were analyzed, of whom 92.1% were hospitalized and 14.7% died. Commonly, excessive tiredness (28.0%), headache (18.5%), nausea/emesis (16.6%), muscular weakness (17.0%), impaired sense of smell (9.0%) and taste (12.8%), and delirium (6.7%) were reported. In patients with a complicated or critical disease course (53%) the most frequent neurological complications were ischemic stroke (1.0%) and intracerebral bleeding (ICB; 2.2%). ICB peaked in the critical disease phase (5%) and was associated with the administration of anticoagulation and extracorporeal membrane oxygenation (ECMO). Excessive tiredness (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.20-1.68) and prior neurodegenerative diseases (OR 1.32, 95% CI 1.07-1.63) were associated with an increased risk of an unfavorable outcome. Prior cerebrovascular and neuroimmunological diseases were not associated with an unfavorable short-term outcome of COVID-19. CONCLUSION: Our data on mostly hospitalized COVID-19 patients show that excessive tiredness or prior neurodegenerative disease at first presentation increase the risk of an unfavorable short-term outcome. ICB in critical COVID-19 was associated with therapeutic interventions, such as anticoagulation and ECMO, and thus may be an indirect complication of a life-threatening systemic viral infection.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Stroke , Headache , Humans , SARS-CoV-2
7.
PLoS One ; 16(10): e0258684, 2021.
Article in English | MEDLINE | ID: covidwho-1480452

ABSTRACT

AIMS: Patients with cardiovascular comorbidities have a significantly increased risk for a critical course of COVID-19. As the SARS-CoV2 virus enters cells via the angiotensin-converting enzyme receptor II (ACE2), drugs which interact with the renin angiotensin aldosterone system (RAAS) were suspected to influence disease severity. METHODS AND RESULTS: We analyzed 1946 consecutive patients with cardiovascular comorbidities or hypertension enrolled in one of the largest European COVID-19 registries, the Lean European Open Survey on SARS-CoV-2 (LEOSS) registry. Here, we show that angiotensin II receptor blocker intake is associated with decreased mortality in patients with COVID-19 [OR 0.75 (95% CI 0,59-0.96; p = 0.013)]. This effect was mainly driven by patients, who presented in an early phase of COVID-19 at baseline [OR 0,64 (95% CI 0,43-0,96; p = 0.029)]. Kaplan-Meier analysis revealed a significantly lower incidence of death in patients on an angiotensin receptor blocker (ARB) (n = 33/318;10,4%) compared to patients using an angiotensin-converting enzyme inhibitor (ACEi) (n = 60/348;17,2%) or patients who received neither an ACE-inhibitor nor an ARB at baseline in the uncomplicated phase (n = 90/466; 19,3%; p<0.034). Patients taking an ARB were significantly less frequently reaching the mortality predicting threshold for leukocytes (p<0.001), neutrophils (p = 0.002) and the inflammatory markers CRP (p = 0.021), procalcitonin (p = 0.001) and IL-6 (p = 0.049). ACE2 expression levels in human lung samples were not altered in patients taking RAAS modulators. CONCLUSION: These data suggest a beneficial effect of ARBs on disease severity in patients with cardiovascular comorbidities and COVID-19, which is linked to dampened systemic inflammatory activity.


Subject(s)
Angiotensin Receptor Antagonists/administration & dosage , COVID-19 , Hypertension , Registries , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Biomarkers/blood , COVID-19/blood , COVID-19/drug therapy , COVID-19/mortality , Comorbidity , Disease-Free Survival , Female , Humans , Hypertension/blood , Hypertension/drug therapy , Hypertension/mortality , Inflammation/blood , Inflammation/drug therapy , Inflammation/mortality , Male , Middle Aged , Severity of Illness Index , Survival Rate
8.
United European Gastroenterol J ; 9(9): 1081-1090, 2021 11.
Article in English | MEDLINE | ID: covidwho-1469560

ABSTRACT

BACKGROUND: Corona virus disease 2019 (COVID-19) patients are at increased risk for thromboembolic events. It is unclear whether the risk for gastrointestinal (GI) bleeding is also increased. METHODS: We considered 4128 COVID-19 patients enrolled in the Lean European Open Survey on SARS-CoV-2 (LEOSS) registry. The association between occurrence of GI bleeding and comorbidities as well as medication were examined. In addition, 1216 patients from COKA registry were analyzed focusing on endoscopy diagnostic findings. RESULTS: A cumulative number of 97 patients (1.8%) with GI bleeding were identified in the LEOSS registry and COKA registry. Of 4128 patients from the LEOSS registry, 66 patients (1.6%) had a GI bleeding. The rate of GI bleeding in patients with intensive care unit (ICU) admission was 4.5%. The use of therapeutic dose of anticoagulants showed a significant association with the increased incidence of bleeding in the critical phase of disease. The Charlson comorbidity index and the COVID-19 severity index were significantly higher in the group of patients with GI bleeding than in the group of patients without GI bleeding (5.83 (SD = 2.93) vs. 3.66 (SD = 3.06), p < 0.01 and 3.26 (SD = 1.69) vs. 2.33 (SD = 1.53), p < 0.01, respectively). In the COKA registry 31 patients (2.5%) developed a GI bleeding. Of these, the source of bleeding was identified in upper GI tract in 21 patients (67.7%) with ulcer as the most frequent bleeding source (25.8%, n = 8) followed by gastroesophageal reflux (16.1%, n = 5). In three patients (9.7%) GI bleeding source was located in lower GI tract caused mainly by diverticular bleeding (6.5%, n = 2). In seven patients (22.6%) the bleeding localization remained unknown. CONCLUSION: Consistent with previous research, comorbidities and disease severity correlate with the incidence of GI bleeding. Also, therapeutic anticoagulation seems to be associated with a higher risk of GI bleeding. Overall, the risk of GI bleeding seems not to be increased in COVID-19 patients.


Subject(s)
COVID-19/epidemiology , Endoscopy, Gastrointestinal , Gastrointestinal Hemorrhage/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Anticoagulants/adverse effects , Child , Child, Preschool , Comorbidity , Critical Illness , Diverticular Diseases/diagnosis , Europe/epidemiology , Female , Gastroesophageal Reflux/complications , Gastrointestinal Hemorrhage/etiology , Hospitalization , Humans , Infant , Intensive Care Units , Male , Middle Aged , Peptic Ulcer/diagnosis , Registries , Severity of Illness Index , Young Adult
9.
Infection ; 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1460516

ABSTRACT

PURPOSE: Reported antibiotic use in coronavirus disease 2019 (COVID-19) is far higher than the actual rate of reported bacterial co- and superinfection. A better understanding of antibiotic therapy in COVID-19 is necessary. METHODS: 6457 SARS-CoV-2-infected cases, documented from March 18, 2020, until February 16, 2021, in the LEOSS cohort were analyzed. As primary endpoint, the correlation between any antibiotic treatment and all-cause mortality/progression to the next more advanced phase of disease was calculated for adult patients in the complicated phase of disease and procalcitonin (PCT) ≤ 0.5 ng/ml. The analysis took the confounders gender, age, and comorbidities into account. RESULTS: Three thousand, six hundred twenty-seven cases matched all inclusion criteria for analyses. For the primary endpoint, antibiotic treatment was not correlated with lower all-cause mortality or progression to the next more advanced (critical) phase (n = 996) (both p > 0.05). For the secondary endpoints, patients in the uncomplicated phase (n = 1195), regardless of PCT level, had no lower all-cause mortality and did not progress less to the next more advanced (complicated) phase when treated with antibiotics (p > 0.05). Patients in the complicated phase with PCT > 0.5 ng/ml and antibiotic treatment (n = 286) had a significantly increased all-cause mortality (p = 0.029) but no significantly different probability of progression to the critical phase (p > 0.05). CONCLUSION: In this cohort, antibiotics in SARS-CoV-2-infected patients were not associated with positive effects on all-cause mortality or disease progression. Additional studies are needed. Advice of local antibiotic stewardship- (ABS-) teams and local educational campaigns should be sought to improve rational antibiotic use in COVID-19 patients.

11.
J Clin Med ; 10(17)2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1374437

ABSTRACT

(1) Background: The aim of our study was to identify specific risk factors for fatal outcome in critically ill COVID-19 patients. (2) Methods: Our data set consisted of 840 patients enclosed in the LEOSS registry. Using lasso regression for variable selection, a multifactorial logistic regression model was fitted to the response variable survival. Specific risk factors and their odds ratios were derived. A nomogram was developed as a graphical representation of the model. (3) Results: 14 variables were identified as independent factors contributing to the risk of death for critically ill COVID-19 patients: age (OR 1.08, CI 1.06-1.10), cardiovascular disease (OR 1.64, CI 1.06-2.55), pulmonary disease (OR 1.87, CI 1.16-3.03), baseline Statin treatment (0.54, CI 0.33-0.87), oxygen saturation (unit = 1%, OR 0.94, CI 0.92-0.96), leukocytes (unit 1000/µL, OR 1.04, CI 1.01-1.07), lymphocytes (unit 100/µL, OR 0.96, CI 0.94-0.99), platelets (unit 100,000/µL, OR 0.70, CI 0.62-0.80), procalcitonin (unit ng/mL, OR 1.11, CI 1.05-1.18), kidney failure (OR 1.68, CI 1.05-2.70), congestive heart failure (OR 2.62, CI 1.11-6.21), severe liver failure (OR 4.93, CI 1.94-12.52), and a quick SOFA score of 3 (OR 1.78, CI 1.14-2.78). The nomogram graphically displays the importance of these 14 factors for mortality. (4) Conclusions: There are risk factors that are specific to the subpopulation of critically ill COVID-19 patients.

12.
J Infect Dis ; 2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1370780

ABSTRACT

BACKGROUND: From a public health perspective, effective containment strategies for SARS-CoV-2 should be balanced with individual liberties. METHODS: We collected 79 respiratory samples from 59 patients monitored in an outpatient center or in the intensive care unit of the University Hospital Regensburg. We analyzed viral load by quantitative real-time PCR, viral antigen by point-of-care assay, time since onset of symptoms and presence of SARS-CoV-2 IgG antibodies in the context of virus isolation from respiratory specimen. RESULTS: The odds ratio for virus isolation increased 1.9-fold for each log10 level of SARS-CoV-2 RNA and 7.4-fold with detection of viral antigen, while it decreased 6.3-fold beyond 10 days of symptoms and 20.0-fold with presence of SARS-CoV-2 antibodies. The latter was confirmed for B.1.1.7 strains. The positive predictive value for virus isolation was 60.0% for viral loads above 10 7 RNA copies/mL and 50.0% for the presence of viral antigen. Symptom onset before 10 days and seroconversion predicted lack of infectivity with 93.8% and 96.0%. CONCLUSIONS: Our data support quarantining patients with high viral load and detection of viral antigen, and lifting restrictive measures with increasing time to symptom onset and seroconversion. Delay of antibody formation may prolong infectivity.

13.
Infection ; 2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-1316346

ABSTRACT

PURPOSE: While more advanced COVID-19 necessitates medical interventions and hospitalization, patients with mild COVID-19 do not require this. Identifying patients at risk of progressing to advanced COVID-19 might guide treatment decisions, particularly for better prioritizing patients in need for hospitalization. METHODS: We developed a machine learning-based predictor for deriving a clinical score identifying patients with asymptomatic/mild COVID-19 at risk of progressing to advanced COVID-19. Clinical data from SARS-CoV-2 positive patients from the multicenter Lean European Open Survey on SARS-CoV-2 Infected Patients (LEOSS) were used for discovery (2020-03-16 to 2020-07-14) and validation (data from 2020-07-15 to 2021-02-16). RESULTS: The LEOSS dataset contains 473 baseline patient parameters measured at the first patient contact. After training the predictor model on a training dataset comprising 1233 patients, 20 of the 473 parameters were selected for the predictor model. From the predictor model, we delineated a composite predictive score (SACOV-19, Score for the prediction of an Advanced stage of COVID-19) with eleven variables. In the validation cohort (n = 2264 patients), we observed good prediction performance with an area under the curve (AUC) of 0.73 ± 0.01. Besides temperature, age, body mass index and smoking habit, variables indicating pulmonary involvement (respiration rate, oxygen saturation, dyspnea), inflammation (CRP, LDH, lymphocyte counts), and acute kidney injury at diagnosis were identified. For better interpretability, the predictor was translated into a web interface. CONCLUSION: We present a machine learning-based predictor model and a clinical score for identifying patients at risk of developing advanced COVID-19.

14.
J Nephrol ; 34(4): 1007-1018, 2021 08.
Article in English | MEDLINE | ID: covidwho-1263196

ABSTRACT

AIMS: The aim of the current study was to evaluate whether tubular markers kidney injury molecule-1 (KIM-1) and N-acetyl-ß-glucosaminidase (NAG) are related to acute kidney injury (AKI) and severe disease in patients with COVID-19. METHODS AND RESULTS: In this prospective observational clinical trial we examined a cohort of 80 patients with proof of acute respiratory infection and divided them into a COVID-19 cohort (n = 54) and a control cohort (n = 26). KIM-1 and NAG were measured from urine samples collected in the emergency department. We assessed the development of AKI, admission to the intensive care unit (ICU) and intrahospital death as clinical endpoints. Urinary KIM-1 and NAG were not significantly different between patients with SARS-CoV-2 and those with other respiratory infections (each p = n.s.). Eight patients from the COVID-19 cohort and five of the non-COVID-19-patients suffered from acute kidney injury during their stay. Nine COVID-19 patients and two non-COVID-19 patients were admitted to the ICU. KIM-1 was significantly elevated in COVID-19 patients with, compared to those without AKI (p = 0.005), as opposed to NAG and creatinine (each p = n.s.). Furthermore, KIM-1 was significantly elevated in the patients with COVID-19 that had to be transferred to the ICU (p = 0.015), in contrast to NAG and creatinine (each p = n.s.). CONCLUSION: Assessing KIM-1 in patients with COVID-19 might provide additional value in recognizing AKI at an early stage of disease. Further, KIM-1 might indicate higher risk for clinical deterioration as displayed by admission to the ICU.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Biomarkers , Hepatitis A Virus Cellular Receptor 1 , Humans , Kidney , SARS-CoV-2 , Severity of Illness Index
15.
Nat Commun ; 12(1): 3006, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1238000

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to pneumonia and hyperinflammation. Here we show a sensitive method to measure polyclonal T cell activation by downstream effects on responder cells like basophils, plasmacytoid dendritic cells, monocytes and neutrophils in whole blood. We report a clear T cell hyporeactivity in hospitalized COVID-19 patients that is pronounced in ventilated patients, associated with prolonged virus persistence and reversible with clinical recovery. COVID-19-induced T cell hyporeactivity is T cell extrinsic and caused by plasma components, independent of occasional immunosuppressive medication of the patients. Monocytes respond stronger in males than females and IL-2 partially restores T cell activation. Downstream markers of T cell hyporeactivity are also visible in fresh blood samples of ventilated patients. Based on our data we developed a score to predict fatal outcomes and identify patients that may benefit from strategies to overcome T cell hyporeactivity.


Subject(s)
COVID-19/immunology , Inflammation/immunology , Lymphocyte Activation/immunology , Pneumonia/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Aged , Basophils/immunology , COVID-19/virology , Cells, Cultured , Dendritic Cells/immunology , Female , Humans , Male , Middle Aged , Monocytes/immunology , Neutrophils/immunology , SARS-CoV-2/physiology , Young Adult
16.
J Clin Virol ; 139: 104847, 2021 06.
Article in English | MEDLINE | ID: covidwho-1201793

ABSTRACT

BACKGROUND: The vast majority of COVID-19 patients experience a mild disease. However, a minority suffers from critical disease with substantial morbidity and mortality. OBJECTIVES: To identify individuals at risk of critical COVID-19, the relevance of a seroreactivity against seasonal human coronaviruses was analyzed. METHODS: We conducted a multi-center non-interventional study comprising 296 patients with confirmed SARS-CoV-2 infections from four tertiary care referral centers in Germany and France. The ICU group comprised more males, whereas the outpatient group contained a higher percentage of females. For each patient, the serum or plasma sample obtained closest after symptom onset was examined by immunoblot regarding IgG antibodies against the nucleocapsid protein (NP) of HCoV 229E, NL63, OC43 and HKU1. RESULTS: Median age was 60 years (range 18-96). Patients with critical disease (n=106) had significantly lower levels of anti-HCoV OC43 nucleocapsid protein (NP)-specific antibodies compared to other COVID-19 inpatients (p=0.007). In multivariate analysis (adjusted for age, sex and BMI), OC43 negative inpatients had an increased risk of critical disease (adjusted odds ratio (AOR) 2.68 [95% CI 1.09 - 7.05]), higher than the risk by increased age or BMI, and lower than the risk by male sex. A risk stratification based on sex and OC43 serostatus was derived from this analysis. CONCLUSIONS: Our results suggest that prior infections with seasonal human coronaviruses can protect against a severe course of COVID-19. Therefore, anti-OC43 antibodies should be measured for COVID-19 inpatients and considered as part of the risk assessment for each patient. Hence, we expect individuals tested negative for anti-OC43 antibodies to particularly benefit from vaccination against SARS-CoV-2, especially with other risk factors prevailing.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/etiology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Phosphoproteins/immunology , Risk Factors , Young Adult
17.
Emerg Infect Dis ; 27(4): 1077-1086, 2021.
Article in English | MEDLINE | ID: covidwho-1067634

ABSTRACT

Pneumonia caused by severe acute respiratory syndrome coronavirus 2 emerged in China at the end of 2019. Because of the severe immunomodulation and lymphocyte depletion caused by this virus and the subsequent administration of drugs directed at the immune system, we anticipated that patients might experience fungal superinfection. We collected data from 186 patients who had coronavirus disease-associated pulmonary aspergillosis (CAPA) worldwide during March-August 2020. Overall, 182 patients were admitted to the intensive care unit (ICU), including 180 with acute respiratory distress syndrome and 175 who received mechanical ventilation. CAPA was diagnosed a median of 10 days after coronavirus disease diagnosis. Aspergillus fumigatus was identified in 80.3% of patient cultures, 4 of which were azole-resistant. Most (52.7%) patients received voriconazole. In total, 52.2% of patients died; of the deaths, 33.0% were attributed to CAPA. We found that the cumulative incidence of CAPA in the ICU ranged from 1.0% to 39.1%.


Subject(s)
Aspergillus fumigatus/isolation & purification , COVID-19 , Intensive Care Units/statistics & numerical data , Pulmonary Aspergillosis , Voriconazole/therapeutic use , Aged , Antifungal Agents/therapeutic use , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , Incidence , International Cooperation , Male , Outcome and Process Assessment, Health Care , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/mortality , Registries , Respiration, Artificial/methods , Risk Factors , SARS-CoV-2/isolation & purification
18.
ESC Heart Fail ; 8(1): 309-316, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064347

ABSTRACT

AIMS: We aimed to assess whether expression of whole-blood RNA of sodium proton exchanger 1 (NHE1) and glucose transporter 1 (GLUT1) is associated with COVID-19 infection and outcome in patients presenting to the emergency department with respiratory infections. Furthermore, we investigated NHE1 and GLUT1 expression in the myocardium of deceased COVID-19 patients. METHODS AND RESULTS: Whole-blood quantitative assessment of NHE1 and GLUT1 RNA was performed using quantitative PCR in patients with respiratory infection upon first contact in the emergency department and subsequently stratified by SARS-CoV-2 infection status. Assessment of NHE1 and GLUT1 RNA using PCR was also performed in left ventricular myocardium of deceased COVID-19 patients. NHE1 expression is up-regulated in whole blood of patients with COVID-19 compared with other respiratory infections at first medical contact in the emergency department (control: 0.0021 ± 0.0002, COVID-19: 0.0031 ± 0.0003, P = 0.01). The ratio of GLUT1 to NHE1 is significantly decreased in the blood of COVID-19 patients who are subsequently intubated and/or die (severe disease) compared with patients with moderate disease (moderate disease: 0.497 ± 0.083 vs. severe disease: 0.294 ± 0.0336, P = 0.036). This ratio is even further decreased in the myocardium of patients who deceased from COVID-19 in comparison with the myocardium of non-infected donors. CONCLUSIONS: NHE1 and GLUT1 may be critically involved in the disease progression of SARS-CoV-2 infection. We show here that SARS-CoV-2 infection critically disturbs ion channel expression in the heart. A decreased ratio of GLUT1/NHE1 could potentially serve as a biomarker for disease severity in patients with COVID-19.


Subject(s)
COVID-19/metabolism , Glucose Transporter Type 1/blood , Sodium-Hydrogen Exchanger 1/blood , COVID-19/blood , COVID-19/diagnosis , Case-Control Studies , Emergency Service, Hospital , Female , Glucose Transporter Type 1/metabolism , Humans , Male , Middle Aged , Polymerase Chain Reaction , Predictive Value of Tests , Prospective Studies , RNA, Messenger/blood , Severity of Illness Index , Sodium-Hydrogen Exchanger 1/metabolism
19.
Int J Infect Dis ; 103: 624-627, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1065181

ABSTRACT

A 21-year-old woman was hospitalized due to coronavirus disease 2019 (COVID-19)-associated respiratory and hepatic impairment concomitant with severe hemolytic anemia. Upon diagnosis of secondary hemophagocytic lymphohistiocytosis, immunosuppression with anakinra and steroids was started, leading to a hepatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viremia. Subsequent liver biopsy revealed virus particles in hepatocytes by electron microscopy and SARS-CoV-2 virus could be isolated and cultured. Immunosuppression was stopped and convalescent donor plasma given. In the differential diagnosis, an acute crisis of Wilson's disease was raised by laboratory and genetic testing. This case highlights the complexity of balancing immunosuppression to control hyperinflammation versus systemic SARS-CoV-2 dissemination.


Subject(s)
COVID-19/complications , Hepatolenticular Degeneration/diagnosis , Liver/virology , Lymphohistiocytosis, Hemophagocytic/etiology , SARS-CoV-2 , Diagnosis, Differential , Female , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...