Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Am J Physiol Cell Physiol ; 322(4): C723-C738, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1685743


Numerous studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect host cells through binding to angiotensin I converting enzyme 2 (ACE2) expressing in various tissues and organs. In this study, we deeply analyzed the single-cell expression profiles of ACE2 in fetal and adult human hearts to explore the potential mechanism of SARS-CoV-2 harming the heart. The molecular docking software was used to simulate the binding of SARS-CoV-2 and its variant spike protein with ACE2. The genes closely related to ACE2 in renin-angiotensin system (RAS) were identified by constructing a protein-protein interaction network. Through the analysis of single-cell transcription profiles at different stages of human embryos, we found that the expression level of ACE2 in ventricular myocytes was increased with embryonic development. The results of single-cell sequencing analysis showed that the expression of ACE2 in ventricular myocytes was upregulated in heart failure induced by dilated cardiomyopathy compared with normal hearts. The upregulation of ACE2 increases the risk of infection with SARS-CoV-2 in fetal and adult human hearts. We also further confirmed the expression of ACE2 and ACE2-related genes in normal and SARS-CoV-2-infected human pluripotent stem cell-derived cardiomyocytes. In addition, the pathway analysis revealed that ACE2 may regulate the differently expressed genes in heart failure through calcium signaling pathway and Wnt signaling pathway.

Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , SARS-CoV-2 , Adult , Angiotensin-Converting Enzyme 2/genetics , Female , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pregnancy , Renin-Angiotensin System
Transbound Emerg Dis ; 67(4): 1745-1749, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-71843


The pandemic SARS-CoV-2 has been reported in 123 countries with more than 5,000 patients died from it. However, the original and intermediate hosts of the virus remain unknown. In this study, 1,914 serum samples from 35 animal species were used for detection of SARS-CoV-2-specific antibodies using double-antigen sandwich ELISA after validating its specificity and sensitivity. The results showed that no SARS-CoV-2-specific antibodies were detected in above samples which excluded the possibility of 35 animal species as intermediate host for SARS-CoV-2. More importantly, companion animals including pet dogs (including one dog the SARS-CoV-2 patient kept and two dogs which had close contact with it) and cats, street dogs and cats also showed serological negative to SARS-CoV-2, which relieved the public concerns for the pets as SARS-CoV-2 carriers.

Clinical Laboratory Techniques/veterinary , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Animals , Animals, Wild , Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Cats , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Pets , SARS-CoV-2