Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Preprint in English | Other preprints | ID: ppcovidwho-295003

ABSTRACT

The involvement of IgG3 in the humoral immune response to SARS-CoV2 infection has been implicated in the pathogenesis of ARDS in COVID-19. The exact molecular mechanism is unknown but may be due to the differential ability of IgG3 Fc region to fix complement and stimulate cytokine release. We examined convalescent patients’ antibodies binding to immobilised nucleocapsid and spike protein by MALDI-ToF mass spectrometry. IgG3 was a major immunoglobulin found in all samples. Differential analysis of the spectral signatures found for nucleocapsid versus spike protein demonstrated that the predominant humoral immune response to nucleocapsid was IgG3, whilst against spike it was IgG1. However, the spike protein displayed a strong affinity for IgG3 itself which it would bind from control plasma samples as well as from those previously infected with SARS-CoV2, much in the way Protein-G binds IgG1. Furthermore, detailed spectral analysis indicated a mass shift consistent with hyper-glycosylation or glycation was a characteristic of the IgG3 captured by the spike protein.

2.
Blood Cancer J ; 11(12): 191, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545601

ABSTRACT

Multiple myeloma (MM) patients have increased risk of severe coronavirus disease 2019 (COVID-19) when infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Monoclonal gammopathy of undetermined significance (MGUS), the precursor of MM has been associated with immune dysfunction which may lead to severe COVID-19. No systematic data have been published on COVID-19 in individuals with MGUS. We conducted a large population-based cohort study evaluating the risk of SARS-CoV-2 infection and severe COVID-19 among individuals with MGUS. We included 75,422 Icelanders born before 1976, who had been screened for MGUS in the Iceland Screens Treats or Prevents Multiple Myeloma study (iStopMM). Data on SARS-CoV-2 testing and COVID-19 severity were acquired from the Icelandic COVID-19 Study Group. Using a test-negative study design, we included 32,047 iStopMM participants who had been tested for SARS-CoV-2, of whom 1754 had MGUS. Among these participants, 1100 participants, tested positive, 65 of whom had MGUS. Severe COVID-19 developed in 230 participants, including 16 with MGUS. MGUS was not associated with SARS-CoV-2 infection (Odds ratio (OR): 1.05; 95% confidence interval (CI): 0.81-1.36; p = 0.72) or severe COVID-19 (OR: 0.99; 95%CI: 0.52-1.91; p = 0.99). These findings indicate that MGUS does not affect the susceptibility to SARS-CoV-2 or the severity of COVID-19.

3.
Immunology ; 164(1): 135-147, 2021 09.
Article in English | MEDLINE | ID: covidwho-1295026

ABSTRACT

Detecting antibody responses during and after SARS-CoV-2 infection is essential in determining the seroepidemiology of the virus and the potential role of antibody in disease. Scalable, sensitive and specific serological assays are essential to this process. The detection of antibody in hospitalized patients with severe disease has proven relatively straightforward; detecting responses in subjects with mild disease and asymptomatic infections has proven less reliable. We hypothesized that the suboptimal sensitivity of antibody assays and the compartmentalization of the antibody response may contribute to this effect. We systematically developed an ELISA, optimizing different antigens and amplification steps, in serum and saliva from non-hospitalized SARS-CoV-2-infected subjects. Using trimeric spike glycoprotein, rather than nucleocapsid, enabled detection of responses in individuals with low antibody responses. IgG1 and IgG3 predominate to both antigens, but more anti-spike IgG1 than IgG3 was detectable. All antigens were effective for detecting responses in hospitalized patients. Anti-spike IgG, IgA and IgM antibody responses were readily detectable in saliva from a minority of RT-PCR confirmed, non-hospitalized symptomatic individuals, and these were mostly subjects who had the highest levels of anti-spike serum antibodies. Therefore, detecting antibody responses in both saliva and serum can contribute to determining virus exposure and understanding immune responses after SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Saliva
SELECTION OF CITATIONS
SEARCH DETAIL
...