Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Cardiothorac Vasc Anesth ; 36(9): 3576-3586, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1900688

ABSTRACT

OBJECTIVES: The clinical efficacy of corticosteroids remains unclear. The primary aim of this systematic review and meta-analysis was to evaluate the use of high-dose versus low- dose corticosteroids on the mortality rate of COVID-19 patients. DESIGN: Systematic review and meta-analysis. SETTING: Electronic search for randomized controlled trials and observational studies (MEDLINE, EMBASE, CENTRAL). PARTICIPANTS: Hospitalized adults ≥ 18 years old who were SARS-CoV-2 PCR positive. INTERVENTIONS: High-dose and low-dose corticosteroids. MEASUREMENTS AND MAIN RESULTS: A total of twelve studies (n=2759 patients) were included in this review. The pooled analysis demonstrated no significant difference in mortality rate between the high-dose and low-dose corticosteroids groups (n=2632; OR: 1.07 [95%CI 0.67, 1.72], p=0.77, I2=76%, trial sequential analysis=inconclusive). No significant differences were observed in the incidence of intensive care unit (ICU) admission rate (n=1544; OR: 0.77[95%CI 0.43, 1.37], p=0.37, I2= 72%), duration of hospital stay (n=1615; MD: 0.53[95%CI -1.36, 2.41], p=0.58, I2=87%), respiratory support (n=1694; OR: 1.51[95%CI 0.77, 2.96], p=0.23, I2=84%), duration of mechanical ventilation (n=419; MD: -1.44[95%CI -4.27, 1.40], p=0.32, I2=93%), incidence of hyperglycemia (n=516, OR: 0.91[95%CI 0.58, 1.43], p=0.68, I2=0%) and infection rate (n=1485, OR: 0.86[95%CI 0.64, 1.16], p=0.33, I2=29%). CONCLUSION: The meta-analysis demonstrated high-dose corticosteroids did not reduce mortality rate. However, high-dose corticosteroids did not pose higher risk of hyperglycemia and infection rate for COVID-19 patients. Due to the inconclusive trial sequential analysis, substantial heterogeneity and low level of evidence, future large-scale randomized clinical trials are warranted to improve the certainty of evidence for the use of high-dose compared to low-dose corticosteroids in COVID-19 patients.


Subject(s)
COVID-19 , Hyperglycemia , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Humans , Respiration, Artificial , SARS-CoV-2
2.
Crit Care ; 25(1): 260, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1854842

ABSTRACT

BACKGROUND: The optimal protein dose in critical illness is unknown. We aim to conduct a systematic review of randomized controlled trials (RCTs) to compare the effect of higher versus lower protein delivery (with similar energy delivery between groups) on clinical and patient-centered outcomes in critically ill patients. METHODS: We searched MEDLINE, EMBASE, CENTRAL and CINAHL from database inception through April 1, 2021.We included RCTs of (1) adult (age ≥ 18) critically ill patients that (2) compared higher vs lower protein with (3) similar energy intake between groups, and (4) reported clinical and/or patient-centered outcomes. We excluded studies on immunonutrition. Two authors screened and conducted quality assessment independently and in duplicate. Random-effect meta-analyses were conducted to estimate the pooled risk ratio (dichotomized outcomes) or mean difference (continuous outcomes). RESULTS: Nineteen RCTs were included (n = 1731). Sixteen studies used primarily the enteral route to deliver protein. Intervention was started within 72 h of ICU admission in sixteen studies. The intervention lasted between 3 and 28 days. In 11 studies that reported weight-based nutrition delivery, the pooled mean protein and energy received in higher and lower protein groups were 1.31 ± 0.48 vs 0.90 ± 0.30 g/kg and 19.9 ± 6.9 versus 20.1 ± 7.1 kcal/kg, respectively. Higher vs lower protein did not significantly affect overall mortality [risk ratio 0.91, 95% confidence interval (CI) 0.75-1.10, p = 0.34] or other clinical or patient-centered outcomes. In 5 small studies, higher protein significantly attenuated muscle loss (MD -3.44% per week, 95% CI -4.99 to -1.90; p < 0.0001). CONCLUSION: In critically ill patients, a higher daily protein delivery was not associated with any improvement in clinical or patient-centered outcomes. Larger, and more definitive RCTs are needed to confirm the effect of muscle loss attenuation associated with higher protein delivery. PROSPERO registration number: CRD42021237530.


Subject(s)
Dietary Proteins/administration & dosage , Energy Intake/physiology , Critical Illness/therapy , Dietary Proteins/therapeutic use , Enteral Nutrition/methods , Enteral Nutrition/standards , Humans , Mortality/trends , Randomized Controlled Trials as Topic/statistics & numerical data
3.
Journal of cardiothoracic and vascular anesthesia ; 2022.
Article in English | EuropePMC | ID: covidwho-1843154

ABSTRACT

Objectives : The clinical efficacy of corticosteroids remains unclear. The primary aim of this systematic review and meta-analysis was to evaluate the use of high dose versus low dose corticosteroids on the mortality rate of COVID-19 patients. Design : Systematic Review and Meta-analysis Setting : Electronic search for randomized controlled trials and observational studies (MEDLINE, EMBASE, CENTRAL) Participants : Hospitalized adults ≥ 18 years old who are SARS-CoV-2 PCR positive Interventions : High dose and low dose corticosteroids Measurements and Main Results : A total of twelve studies (n=2759 patients) were included in this review. Our pooled analysis demonstrated no significant difference in mortality rate between the high dose and low dose corticosteroids groups (n=2632;OR: 1.07 [95%CI 0.67, 1.72], p=0.77, I2=76%, trial sequential analysis=inconclusive). No significant differences were observed in the incidence of intensive care unit (ICU) admission rate (n=1544;OR: 0.77[95%CI 0.43, 1.37], p=0.37, I2= 72%), duration of hospital stay (n=1615;MD: 0.53[95%CI -1.36, 2.41], p=0.58, I2=87%), respiratory support (n=1694;OR: 1.51[95%CI 0.77, 2.96], p=0.23, I2=84%), duration of mechanical ventilation (n=419;MD: -1.44[95%CI -4.27, 1.40], p=0.32, I2=93%), incidence of hyperglycemia (n=516, OR: 0.91[95%CI 0.58, 1.43], p=0.68, I2=0%) and infection rate (n=1485, OR: 0.86[95%CI 0.64, 1.16], p=0.33, I2=29%). Conclusion : Our meta-analysis demonstrated high dose corticosteroids did not reduce mortality rate. However, high dose corticosteroids do not pose higher risk of hyperglycemia and infection rate for COVID-19 patients. Due to the inconclusive trial sequential analysis, substantial heterogeneity and low level of evidence, future large-scale randomized clinical trials are warranted to improve the certainty of evidence for the use of high dose compared to low dose corticosteroids in COVID-19 patients. Keywords Graphical Image, graphical

4.
J Med Virol ; 2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1718381

ABSTRACT

Malaysia has experienced three waves of coronavirus disease 2019 (COVID-19) as of March 31, 2021. We studied the associated molecular epidemiology and SARS-CoV-2 seroprevalence during the third wave. We obtained 60 whole-genome SARS-CoV-2 sequences between October 2020 and January 2021 in Kuala Lumpur/Selangor and analyzed 989 available Malaysian sequences. We tested 653 residual serum samples collected between December 2020 to April 2021 for anti-SARS-CoV-2 total antibodies, as a proxy for population immunity. The first wave (January 2020) comprised sporadic imported cases from China of early Pango lineages A and B. The second wave (March-June 2020) was associated with lineage B.6. The ongoing third wave (from September 2020) was propagated by a state election in Sabah. It is due to lineage B.1.524 viruses containing spike mutations D614G and A701V. Lineages B.1.459, B.1.470, and B.1.466.2 were likely imported from the region and confined to Sarawak state. Direct age-standardized seroprevalence in Kuala Lumpur/Selangor was 3.0%. The second and third waves were driven by super-spreading events and different circulating lineages. Malaysia is highly susceptible to further waves, especially as alpha (B.1.1.7) and beta (B.1.351) variants of concern were first detected in December 2020/January 2021. Increased genomic surveillance is critical.

5.
J Med Virol ; 2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1516774

ABSTRACT

Malaysia has experienced three waves of coronavirus disease 2019 (COVID-19) as of March 31, 2021. We studied the associated molecular epidemiology and SARS-CoV-2 seroprevalence during the third wave. We obtained 60 whole-genome SARS-CoV-2 sequences between October 2020 and January 2021 in Kuala Lumpur/Selangor and analyzed 989 available Malaysian sequences. We tested 653 residual serum samples collected between December 2020 to April 2021 for anti-SARS-CoV-2 total antibodies, as a proxy for population immunity. The first wave (January 2020) comprised sporadic imported cases from China of early Pango lineages A and B. The second wave (March-June 2020) was associated with lineage B.6. The ongoing third wave (from September 2020) was propagated by a state election in Sabah. It is due to lineage B.1.524 viruses containing spike mutations D614G and A701V. Lineages B.1.459, B.1.470, and B.1.466.2 were likely imported from the region and confined to Sarawak state. Direct age-standardized seroprevalence in Kuala Lumpur/Selangor was 3.0%. The second and third waves were driven by super-spreading events and different circulating lineages. Malaysia is highly susceptible to further waves, especially as alpha (B.1.1.7) and beta (B.1.351) variants of concern were first detected in December 2020/January 2021. Increased genomic surveillance is critical.

6.
J Clin Virol ; 145: 105000, 2021 12.
Article in English | MEDLINE | ID: covidwho-1472031

ABSTRACT

BACKGROUND: Reports of co-circulation of respiratory viruses during the COVID-19 pandemic and co-infections with SARS-CoV-2 vary. However, limited information is available from developing countries. OBJECTIVES: We aimed to investigate the incidence of respiratory viruses in adult patients with suspected COVID-19 in Kuala Lumpur, Malaysia. STUDY DESIGN: We collected 198 respiratory samples from adult patients hospitalized with suspected COVID-19 in a single teaching hospital in Kuala Lumpur in February-May 2020 and tested combined oro-nasopharyngeal swabs with the NxTAG Respiratory Pathogen Panel (Luminex) and Allplex RV Essential (Seegene) assays. Forty-five negative samples further underwent viral metagenomics analysis. RESULTS: Of the 198 samples, 74 (37.4%) had respiratory pathogens, including 56 (28.3%) with SARS-CoV-2 and 18 (9.1%) positive for other respiratory pathogens. There were five (2.5%) SARS-CoV-2 co-infections, all with rhinovirus/enterovirus. Three samples (6.7%; 3/45) had viruses identified by metagenomics, including one case of enterovirus D68 and one of Saffold virus genotype 6 in a patient requiring ICU care. Most of the COVID-19 patients (91.1%; 51/56) had mild symptoms but 5.4% (3/56) died. CONCLUSION: During the early COVID-19 period, common respiratory viruses other than SARS-CoV-2 only accounted for 9.1% of hospitalization cases with ARI and co-infections with SARS-CoV-2 were rare. Continued surveillance is important to understand the impact of COVID-19 and its associated public health control measures on circulation of other respiratory viruses. Metagenomics can identify unexpected or rare pathogens, such as Saffold virus, which is rarely described in adults.


Subject(s)
COVID-19 , Viruses , Adult , Humans , Malaysia/epidemiology , Pandemics , SARS-CoV-2 , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL