Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Fujita Med J ; 9(2): 84-89, 2023 May.
Article in English | MEDLINE | ID: covidwho-20236791

ABSTRACT

Objectives: To establish a point-of-care test for coronavirus disease 2019 (COVID-19), we developed a dry loop-mediated isothermal amplification (LAMP) method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Methods: We carried out reverse transcription (RT)-LAMP using the Loopamp SARS-CoV-2 Detection kit (Eiken Chemical, Tokyo, Japan). The entire mixture, except for the primers, is dried and immobilized inside the tube lid. Results: To determine the specificity of the kit, 22 viruses associated with respiratory infections, including SARS-CoV-2, were tested. The sensitivity of this assay, determined by either a real-time turbidity assay or colorimetric change of the reaction mixture, as evaluated by the naked eye or under illumination with ultraviolet light, was 10 copies/reaction. No LAMP product was detected in reactions performed with RNA from any pathogens other than SARS-CoV-2. After completing an initial validation analysis, we analyzed 24 nasopharyngeal swab specimens collected from patients suspected to have COVID-19. Of the 24 samples, 19 (79.2%) were determined by real-time RT-PCR analysis as being positive for SARS-CoV-2 RNA. Using the Loopamp SARS-CoV-2 Detection kit, we detected SARS-CoV-2 RNA in 15 (62.5%) of the 24 samples. Thus, the sensitivity, specificity, positive predictive value, and negative predictive values of the Loopamp 2019-CoV-2 detection reagent kit were 78.9%, 100%, 100%, and 55.6%, respectively. Conclusions: The dry LAMP method for detecting SARS-CoV-2 RNA is fast and easy to use, and its reagents can be stored at 4°C, solving the cold chain problem; thus, it represents a promising tool for COVID-19 diagnosis in developing countries.

2.
Proc Natl Acad Sci U S A ; 120(22): e2300155120, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2323651

ABSTRACT

Obesity has been recognized as one of the most significant risk factors for the deterioration and mortality associated with COVID-19, but the significance of obesity itself differs among ethnicity. Multifactored analysis of our single institute-based retrospective cohort revealed that high visceral adipose tissue (VAT) burden, but not other obesity-associated markers, was related to accelerated inflammatory responses and the mortality of Japanese COVID-19 patients. To elucidate the mechanisms how VAT-dominant obesity induces severe inflammation after severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, we infected two different strains of obese mice, C57BL/6JHamSlc-ob/ob (ob/ob), C57BLKS/J-db/db (db/db), genetically impaired in the leptin ligand and receptor, respectively, and control C57BL/6 mice with mouse-adapted SARS-CoV-2. Here, we revealed that VAT-dominant ob/ob mice were extremely more vulnerable to SARS-CoV-2 due to excessive inflammatory responses when compared to SAT-dominant db/db mice. In fact, SARS-CoV-2 genome and proteins were more abundant in the lungs of ob/ob mice, engulfed in macrophages, resulting in increased cytokine production including interleukin (IL)-6. Both an anti-IL-6 receptor antibody treatment and the prevention of obesity by leptin replenishment improved the survival of SARS-CoV-2-infected ob/ob mice by reducing the viral protein burden and excessive immune responses. Our results have proposed unique insights and clues on how obesity increases the risk of cytokine storm and death in patients with COVID-19. Moreover, earlier administration of antiinflammatory therapeutics including anti-IL-6R antibody to VAT-dominant patients might improve clinical outcome and stratification of the treatment for COVID-19, at least in Japanese patients.


Subject(s)
COVID-19 , Malus , Mice , Animals , Leptin/genetics , Cytokines , COVID-19/complications , Retrospective Studies , SARS-CoV-2 , Mice, Inbred C57BL , Obesity/complications , Obesity/genetics , Interleukin-6 , Mice, Obese
3.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2300191

ABSTRACT

Evaluating the serum cross-neutralization responses after breakthrough infection with various SARS-CoV-2 variants provides valuable insight for developing variant-proof COVID-19 booster vaccines. However, fairly comparing the impact of breakthrough infections with distinct epidemic timing on cross-neutralization responses, influenced by the exposure interval between vaccination and infection, is challenging. To compare the impact of pre-Omicron to Omicron breakthrough infection, we estimated the effects on cross-neutralizing responses by the exposure interval using Bayesian hierarchical modeling. The saturation time required to generate saturated cross-neutralization responses differed by variant, with variants more antigenically distant from the ancestral strain requiring longer intervals of 2-4 months. The breadths of saturated cross-neutralization responses to Omicron lineages were comparable in pre-Omicron and Omicron breakthrough infections. Our results highlight the importance of vaccine dosage intervals of 4 months or longer, regardless of the antigenicity of the exposed antigen, to maximize the breadth of serum cross-neutralization covering SARS-CoV-2 Omicron lineages. Graphical

4.
Vaccine ; 41(11): 1834-1847, 2023 03 10.
Article in English | MEDLINE | ID: covidwho-2282146

ABSTRACT

BACKGROUND: In early 2020, developing vaccines was an urgent need for preventing COVID-19 from a contingency perspective. METHODS: S-268019-a is a recombinant protein-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprising a modified recombinant spike protein antigen adjuvanted with agatolimod sodium, a Toll-like receptor-9 agonist. In the preclinical phase, it was administered intramuscularly twice at a 2-week interval in 7-week-old mice. Immunogenicity was assessed, and the mice were challenged intranasally with mouse-adapted SARS-CoV-2 at 2 and 8 weeks, respectively, after the second immunization. After confirming the preclinical effect, a Phase 1/2, randomized, parallel-group clinical study was conducted in healthy adults (aged 20-64 years). All participants received 2 intramuscular injections at various combinations of the antigen and the adjuvant (S-910823/agatolimod sodium, in µg: 12.5/250, 25/250, 50/250, 25/500, 50/500, 100/500, 10/500, 100/100, 200/1000) or placebo (saline) in an equivalent volume at a 3-week interval and were followed up until Day 50 in this interim analysis. RESULTS: In the preclinical studies, S-268019-a was safe and elicited robust immunoglobulin G (IgG) and neutralizing antibody responses in mice. When challenged with SARS-CoV-2, all S-268019-a-treated mice survived and maintained weight until 10 days, whereas all placebo- or adjuvant-treated (without antigen) mice died within 6 days. In the Phase 1/2 trial, although S-268019-a was well tolerated in adult participants, was safe up to Day 50, and elicited robust anti-spike protein IgG antibodies, it did not elicit sufficient neutralizing antibody levels. CONCLUSIONS: The S-268019-a vaccine was not sufficiently immunogenic in Japanese adults despite robust immunogenicity and efficacy in mice. Our results exemplify the innate challenges in translating preclinical data in animals to clinical trials, and highlight the need for continued research to overcome such barriers. (jRCT2051200092).


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Animals , Humans , Mice , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Double-Blind Method , East Asian People , Immunoglobulin G , SARS-CoV-2 , Sodium , Vaccines, Synthetic/immunology
6.
Influenza Other Respir Viruses ; 17(2): e13093, 2023 02.
Article in English | MEDLINE | ID: covidwho-2266808

ABSTRACT

Background: The antigenicity of SARS-CoV-2 is a critical issue for the effectiveness of the vaccine, and thus, it should be phenotypically evaluated by serological assays as new field isolates emerge. The hemagglutination/hemagglutination inhibition (HA/HI) tests are well known as a representative method for antigenic analysis of influenza viruses, but SARS-CoV-2 does not agglutinate human or guinea pig red blood cells. Therefore, the antigenic analysis requires complicated cell-based assays using special equipment such as plate reader or ELISPOT analyzer. Methods: Based on the HA/HI tests for influenza viruses, we developed the particle agglutination/particle agglutination inhibition (PA/PAI) test to easily and rapidly quantify the virus and antibody using human angiotensin-converting enzyme 2 (hACE2)-bound latex beads. The virus titers were determined by mixing the beads and the virus from culture supernatant, settling it overnight, and then observing the sedimentation/agglutination pattern (PA test). The neutralization antibody titers were determined by mixing virus-infected hamster antisera in addition to the beads and virus (PAI test). Results: The PA titer was positively correlated with the plaque-forming units. The PAI titer using the hamster antisera clearly revealed the antigenic difference between the omicron and previous variants. The antigenic differences were supported by the results shown in other methods. Conclusions: The PAI test is an easy and rapid method to analyze the antigenicity of SARS-CoV-2.


Subject(s)
COVID-19 , Orthomyxoviridae , Animals , Humans , Guinea Pigs , SARS-CoV-2 , Hemagglutination Inhibition Tests , Agglutination , Immune Sera , Hemagglutinin Glycoproteins, Influenza Virus
7.
Influenza Other Respir Viruses ; 17(1): e13090, 2023 01.
Article in English | MEDLINE | ID: covidwho-2236075

ABSTRACT

The emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), prompted worldwide COVID-19 surveillance. To investigate the impact of COVID-19 on influenza activity, we used global surveillance data collected since 2019 to compare the number of cases positive for COVID-19 and for influenza across 22 representative countries (Australia, Brazil, Canada, China, Egypt, France, Germany, India, Israel, Italy, Japan, Mexico, The Netherlands, The Philippines, Poland, The Republic of Korea, South Africa, Spain, Thailand, The United Kingdom, The United States, and Vietnam). Our results demonstrate alternating prevalence of SARS-CoV-2 and influenza virus.


Subject(s)
COVID-19 , Influenza, Human , United States , Humans , Influenza, Human/epidemiology , COVID-19/epidemiology , SARS-CoV-2 , France , Spain
8.
J Virol ; 97(1): e0136622, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2193449

ABSTRACT

The diversity of SARS-CoV-2 mutations raises the possibility of reinfection of individuals previously infected with earlier variants, and this risk is further increased by the emergence of the B.1.1.529 Omicron variant. In this study, we used an in vivo, hamster infection model to assess the potential for individuals previously infected with SARS-CoV-2 to be reinfected with Omicron variant and we also investigated the pathology associated with such infections. Initially, Syrian hamsters were inoculated with a lineage A, B.1.1.7, B.1.351, B.1.617.2 or a subvariant of Omicron, BA.1 strain and then reinfected with the BA.1 strain 5 weeks later. Subsequently, the impact of reinfection with Omicron subvariants (BA.1 and BA.2) in individuals previously infected with the BA.1 strain was examined. Although viral infection and replication were suppressed in both the upper and lower airways, following reinfection, virus-associated RNA was detected in the airways of most hamsters. Viral replication was more strongly suppressed in the lower respiratory tract than in the upper respiratory tract. Consistent amino acid substitutions were observed in the upper respiratory tract of infected hamsters after primary infection with variant BA.1, whereas diverse mutations appeared in hamsters reinfected with the same variant. Histopathology showed no acute pneumonia or disease enhancement in any of the reinfection groups and, in addition, the expression of inflammatory cytokines and chemokines in the airways of reinfected animals was only mildly elevated. These findings are important for understanding the risk of reinfection with new variants of SARS-CoV-2. IMPORTANCE The emergence of SARS-CoV-2 variants and the widespread use of COVID-19 vaccines has resulted in individual differences in immune status against SARS-CoV-2. A decay in immunity over time and the emergence of variants that partially evade the immune response can also lead to reinfection. In this study, we demonstrated that, in hamsters, immunity acquired following primary infection with previous SARS-CoV-2 variants was effective in preventing the onset of pneumonia after reinfection with the Omicron variant. However, viral infection and multiplication in the upper respiratory tract were still observed after reinfection. We also showed that more diverse nonsynonymous mutations appeared in the upper respiratory tract of reinfected hamsters that had acquired immunity from primary infection. This hamster model reveals the within-host evolution of SARS-CoV-2 and its pathology after reinfection, and provides important information for countermeasures against diversifying SARS-CoV-2 variants.


Subject(s)
COVID-19 , Reinfection , Animals , Cricetinae , Mesocricetus , RNA, Viral , SARS-CoV-2/genetics
9.
Sci Rep ; 12(1): 20861, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2151108

ABSTRACT

Vaccines that efficiently target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for coronavirus disease (COVID-19), are the best means for controlling viral spread. This study evaluated the efficacy of the COVID-19 vaccine S-268019-b, which comprises the recombinant full-length SARS-CoV-2 spike protein S-910823 (antigen) and A-910823 (adjuvant). In addition to eliciting both Th1-type and Th2-type cellular immune responses, two doses of S-910823 plus A-910823 induced anti-spike protein IgG antibodies and neutralizing antibodies against SARS-CoV-2. In a SARS-CoV-2 challenge test, S-910823 plus A-910823 mitigated SARS-CoV-2 infection-induced weight loss and death and inhibited viral replication in mouse lungs. S-910823 plus A-910823 promoted cytokine and chemokine at the injection site and immune cell accumulation in the draining lymph nodes. This led to the formation of germinal centers and the induction of memory B cells, antibody-secreting cells, and memory T cells. These findings provide fundamental property of S-268019-b, especially importance of A-910823 to elicit humoral and cellular immune responses.


Subject(s)
COVID-19 , Vaccines , Mice , Animals , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Immunity
12.
Vaccine ; 40(41): 5892-5903, 2022 09 29.
Article in English | MEDLINE | ID: covidwho-2004588

ABSTRACT

To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic , Administration, Intranasal , Alum Compounds , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A, Secretory , Immunoglobulin G , Lung , Mice , Oligonucleotides , Spike Glycoprotein, Coronavirus , Vaccination
13.
Microbiol Immunol ; 66(7): 361-370, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1968039

ABSTRACT

The practical use of cell-based seasonal influenza vaccines is currently being considered in Japan. From the perspective of adventitious virus contamination, we assessed the suitability of NIID-MDCK cells (NIID-MDCK-Cs) as a safe substrate for the isolation of influenza viruses from clinical specimens. We first established a sensitive multiplex real-time PCR system to screen for 27 respiratory viruses and used it on 34 virus samples that were isolated by passaging influenza-positive clinical specimens in NIID-MDCK-Cs. Incidentally, the limit of detection (LOD) of the system was 100 or fewer genome copies per reaction. In addition to influenza viruses, human enterovirus 68 (HEV-D68) genomes were detected in two samples after two or three passages in NIID-MDCK-Cs. To further investigate the susceptibility of NIID-MDCK-Cs to adventitious viruses, eight common respiratory viruses were subjected to passages in NIID-MDCK-Cs. The genome copy numbers of seven viruses other than parainfluenza 3 decreased below the LOD by passage 4. By passaging in NIID-MDCK-Cs, the genome numbers of the input HEV-D68, 1 × 108 copies, declined to 102 at passage 3 and to under the LOD at passage 4, whereas those of the other six viruses were under the LOD by passage 3. These results implied that during the process of isolating influenza viruses with NIID-MDCK-Cs, contaminating viruses other than parainfluenza 3 can be efficiently removed by passages in NIID-MDCK-Cs. NIID-MDCK-Cs could be a safe substrate for isolating influenza viruses that can be used to develop cell-based influenza vaccine candidate viruses.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Paramyxoviridae Infections , Viruses , Animals , Dogs , Humans , Influenza Vaccines/genetics , Influenza, Human/prevention & control , Madin Darby Canine Kidney Cells , Vaccine Development , Virus Cultivation/methods
14.
Jpn J Infect Dis ; 75(4): 415-418, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1957587

ABSTRACT

Prominent genomic recombination has been observed between the Delta and Alpha variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), isolated from clinical specimens in Japan. Interestingly, the recombination variant detected in this study carries a spike protein identical to that in the domestic Delta variant, thereby suggesting that further risks would not be associated with infectivity and immune escape. The recombinant was classified as an XC lineage in the PANGOLIN database. It is necessary to intensively study such marked genetic variations and characterize emerging variants after careful verification of their lineage and clade assignment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Japan , Recombination, Genetic , SARS-CoV-2/genetics
16.
Nature ; 607(7917): 119-127, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915276

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/analogs & derivatives , Drug Combinations , Hydroxylamines , Indazoles , Lactams , Leucine , Mice , Nitriles , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Triazines , Triazoles
17.
Antiviral Res ; 205: 105372, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914151

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2 has spread in many countries, replacing the earlier Omicron subvariant BA.1 and other variants. Here, using a cell culture infection assay, we quantified the intrinsic sensitivity of BA.2 and BA.1 compared with other variants of concern, Alpha, Gamma, and Delta, to five approved-neutralizing antibodies and antiviral drugs. Our assay revealed the diverse sensitivities of these variants to antibodies, including the loss of response of both BA.1 and BA.2 to casirivimab and of BA.1 to imdevimab. In contrast, EIDD-1931 and nirmatrelvir showed a more conserved activities to these variants. The viral response profile combined with mathematical analysis estimated differences in antiviral effects among variants in the clinical concentrations. These analyses provide essential evidence that gives insight into variant emergence's impact on choosing optimal drug treatment.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Humans
18.
Nat Microbiol ; 7(8): 1252-1258, 2022 08.
Article in English | MEDLINE | ID: covidwho-1890192

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cricetinae , Humans , Mesocricetus , RNA, Viral
19.
Vaccine ; 40(31): 4231-4241, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1882604

ABSTRACT

The vaccine S-268019-b is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-protein vaccine consisting of full-length recombinant SARS-CoV-2 S-protein (S-910823) as antigen, mixed with the squalene-based adjuvant A-910823. The current study evaluated the immunogenicity of S-268019-b using various doses of S-910823 and its vaccine efficacy against SARS-CoV-2 challenge in cynomolgus monkeys. The different doses of S-910823 combined with A-910823 were intramuscularly administered twice at a 3-week interval. Two weeks after the second dosing, dose-dependent humoral immune responses were observed with neutralizing antibody titers being comparable to that of human convalescent plasma. Pseudoviruses harboring S proteins from Beta and Gamma SARS-CoV-2 variants displayed approximately 3- to 4-fold reduced sensitivity to neutralizing antibodies induced after two vaccine doses compared with that against ancestral viruses, whereas neutralizing antibody titers were reduced >14-fold against the Omicron variant. Cellular immunity was also induced with a relative Th1 polarized response. No adverse clinical signs or weight loss associated with the vaccine were observed, suggesting safety of the vaccine in cynomolgus monkeys. Immunization with 10 µg of S-910823 with A-910823 demonstrated protective efficacy against SARS-CoV-2 challenge according to genomic and subgenomic viral RNA transcript levels in nasopharyngeal, throat, and rectal swab specimens. Pathological analysis revealed no detectable vaccine-dependent enhancement of disease in the lungs of challenged vaccinated monkeys. The current findings provide fundamental information regarding vaccine doses for human trials and support the development of S-268019-b as a safe and effective vaccine for controlling the current pandemic, as well as general protection against SARS-CoV-2 moving forward.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , Immunization, Passive , Immunogenicity, Vaccine , Macaca fascicularis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
20.
Immunohorizons ; 6(4): 275-282, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1818325

ABSTRACT

Putative subcomponent vaccines of severe acute respiratory syndrome coronavirus spike protein and ARNAX (TLR3-specific adjuvant for priming dendritic cells) were examined and compared with spike protein + Alum in a mouse BALB/c model. Survival, body weight, virus-neutralizing Ab titer in the blood, and viral titer in the lung were evaluated for prognosis markers. The infiltration degrees of eosinophils in the lung were histopathologically monitored at 10 d postinfection. The results were: (1) adjuvant was essential in vaccines to achieve a complete recovery from infection, (2) ARNAX displayed optimal body weight recovery compared with Alum, (3) ARNAX was optimal for the amelioration of eosinophilic pneumonia, and (4) the eosinophil infiltration score was not associated with the neutralizing Ab titer in the blood or viral titer in the lung. Although the pathological link between the TLR3 vaccine and lung eosinophil infiltration remains unclear, severe acute respiratory syndrome-mediated eosinophilic pneumonia can be blocked by the prior induction of dendritic cell priming by ARNAX.


Subject(s)
Pulmonary Eosinophilia , Severe acute respiratory syndrome-related coronavirus , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Body Weight , Dendritic Cells , Disease Models, Animal , Mice , Pulmonary Eosinophilia/prevention & control , Toll-Like Receptor 3 , Viral Vaccines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL