Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS Comput Biol ; 18(3): e1009964, 2022 03.
Article in English | MEDLINE | ID: covidwho-1770638

ABSTRACT

When responding to infectious disease outbreaks, rapid and accurate estimation of the epidemic trajectory is critical. However, two common data collection problems affect the reliability of the epidemiological data in real time: missing information on the time of first symptoms, and retrospective revision of historical information, including right censoring. Here, we propose an approach to construct epidemic curves in near real time that addresses these two challenges by 1) imputation of dates of symptom onset for reported cases using a dynamically-estimated "backward" reporting delay conditional distribution, and 2) adjustment for right censoring using the NobBS software package to nowcast cases by date of symptom onset. This process allows us to obtain an approximation of the time-varying reproduction number (Rt) in real time. We apply this approach to characterize the early SARS-CoV-2 outbreak in two Spanish regions between March and April 2020. We evaluate how these real-time estimates compare with more complete epidemiological data that became available later. We explore the impact of the different assumptions on the estimates, and compare our estimates with those obtained from commonly used surveillance approaches. Our framework can help improve accuracy, quantify uncertainty, and evaluate frequently unstated assumptions when recovering the epidemic curves from limited data obtained from public health systems in other locations.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Humans , Reproducibility of Results , Retrospective Studies , SARS-CoV-2
2.
Eur J Epidemiol ; 36(7): 749-752, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1338256

ABSTRACT

Widespread, repeated testing using rapid antigen tests to proactively detect asymptomatic SARS-CoV-2 infections has been a promising yet controversial topic during the COVID-19 pandemic. Concerns have been raised over whether currently authorized lateral flow tests are sufficiently sensitive and specific to detect enough infections to impact transmission whilst minimizing unnecessary isolation of false positives. These concerns have often been illustrated using simple, textbook calculations of positivity rates and positive predictive value assuming fixed values for sensitivity, specificity and prevalence. However, we argue that evaluating repeated testing strategies requires the consideration of three additional factors: new infections continue to arise depending on the incidence rate, isolating positive individuals reduces prevalence in the tested population, and each infected individual is tested multiple times during their infection course. We provide a simple mathematical model with an online interface to illustrate how these three factors impact test positivity rates and the number of isolating individuals over time. These results highlight the potential pitfalls of using inappropriate textbook-style calculations to evaluate statistics arising from repeated testing strategies during an epidemic.


Subject(s)
COVID-19 Testing/statistics & numerical data , Adolescent , Child , England , Female , Humans , Male , Models, Statistical , Pandemics , Predictive Value of Tests , SARS-CoV-2 , Schools , Sensitivity and Specificity
3.
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: covidwho-1261171

ABSTRACT

Estimating an epidemic's trajectory is crucial for developing public health responses to infectious diseases, but case data used for such estimation are confounded by variable testing practices. We show that the population distribution of viral loads observed under random or symptom-based surveillance-in the form of cycle threshold (Ct) values obtained from reverse transcription quantitative polymerase chain reaction testing-changes during an epidemic. Thus, Ct values from even limited numbers of random samples can provide improved estimates of an epidemic's trajectory. Combining data from multiple such samples improves the precision and robustness of this estimation. We apply our methods to Ct values from surveillance conducted during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in a variety of settings and offer alternative approaches for real-time estimates of epidemic trajectories for outbreak management and response.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/physiology , Viral Load , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Cross-Sectional Studies , Epidemiological Monitoring , Humans , Incidence , Models, Theoretical , Pandemics
4.
JAMA Netw Open ; 4(5): e2110071, 2021 05 03.
Article in English | MEDLINE | ID: covidwho-1227701

ABSTRACT

Importance: Nursing homes and other long-term care facilities have been disproportionately impacted by the COVID-19 pandemic. Strategies are urgently needed to reduce transmission in these high-risk populations. Objective: To evaluate COVID-19 transmission in nursing homes associated with contact-targeted interventions and testing. Design, Setting, and Participants: This decision analytical modeling study developed an agent-based susceptible-exposed-infectious (asymptomatic/symptomatic)-recovered model between July and September 2020 to examine SARS-CoV-2 transmission in nursing homes. Residents and staff of a simulated nursing home with 100 residents and 100 staff split among 3 shifts were modeled individually; residents were split into 2 cohorts based on COVID-19 diagnosis. Data were analyzed from September to October 2020. Exposures: In the resident cohorting intervention, residents who had recovered from COVID-19 were moved back from the COVID-19 (ie, infected with SARS-CoV-2) cohort to the non-COVID-19 (ie, susceptible and uninfected with SARS-CoV-2) cohort. In the immunity-based staffing intervention, staff who had recovered from COVID-19 were assumed to have protective immunity and were assigned to work in the non-COVID-19 cohort, while susceptible staff worked in the COVID-19 cohort and were assumed to have high levels of protection from personal protective equipment. These interventions aimed to reduce the fraction of people's contacts that were presumed susceptible (and therefore potentially infected) and replaced them with recovered (immune) contacts. A secondary aim of was to evaluate cumulative incidence of SARS-CoV-2 infections associated with 2 types of screening tests (ie, rapid antigen testing and polymerase chain reaction [PCR] testing) conducted with varying frequency. Main Outcomes and Measures: Estimated cumulative incidence proportion of SARS-CoV-2 infection after 3 months. Results: Among the simulated cohort of 100 residents and 100 staff members, frequency and type of testing were associated with smaller outbreaks than the cohorting and staffing interventions. The testing strategy associated with the greatest estimated reduction in infections was daily antigen testing, which reduced the mean cumulative incidence proportion by 49% in absence of contact-targeted interventions. Under all screening testing strategies, the resident cohorting intervention and the immunity-based staffing intervention were associated with reducing the final estimated size of the outbreak among residents, with the immunity-based staffing intervention reducing it more (eg, by 19% in the absence of testing) than the resident cohorting intervention (eg, by 8% in the absence of testing). The estimated reduction in transmission associated with these interventions among staff varied by testing strategy and community prevalence. Conclusions and Relevance: These findings suggest that increasing the frequency of screening testing of all residents and staff, or even staff alone, in nursing homes may reduce outbreaks in this high-risk setting. Immunity-based staffing may further reduce spread at little or no additional cost and becomes particularly important when daily testing is not feasible.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Homes for the Aged , Nursing Homes , Personnel Staffing and Scheduling/organization & administration , Adaptive Immunity , Aged , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Decision Support Techniques , Humans , Personal Protective Equipment , Viral Load , Vulnerable Populations
5.
Science ; 372(6544): 815-821, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1186201

ABSTRACT

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Brazil/epidemiology , Epidemiological Monitoring , Genome, Viral , Genomics , Humans , Models, Theoretical , Molecular Epidemiology , Mutation , Protein Binding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Viral Load
6.
Sci Transl Med ; 13(589)2021 04 14.
Article in English | MEDLINE | ID: covidwho-1096970

ABSTRACT

Virological testing is central to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) containment, but many settings face severe limitations on testing. Group testing offers a way to increase throughput by testing pools of combined samples; however, most proposed designs have not yet addressed key concerns over sensitivity loss and implementation feasibility. Here, we combined a mathematical model of epidemic spread and empirically derived viral kinetics for SARS-CoV-2 infections to identify pooling designs that are robust to changes in prevalence and to ratify sensitivity losses against the time course of individual infections. We show that prevalence can be accurately estimated across a broad range, from 0.02 to 20%, using only a few dozen pooled tests and using up to 400 times fewer tests than would be needed for individual identification. We then exhaustively evaluated the ability of different pooling designs to maximize the number of detected infections under various resource constraints, finding that simple pooling designs can identify up to 20 times as many true positives as individual testing with a given budget. Crucially, we confirmed that our theoretical results can be translated into practice using pooled human nasopharyngeal specimens by accurately estimating a 1% prevalence among 2304 samples using only 48 tests and through pooled sample identification in a panel of 960 samples. Our results show that accounting for variation in sampled viral loads provides a nuanced picture of how pooling affects sensitivity to detect infections. Using simple, practical group testing designs can vastly increase surveillance capabilities in resource-limited settings.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2 , Serologic Tests , Specimen Handling , Viral Load
7.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1060363

ABSTRACT

The COVID-19 pandemic has created a public health crisis. Because SARS-CoV-2 can spread from individuals with presymptomatic, symptomatic, and asymptomatic infections, the reopening of societies and the control of virus spread will be facilitated by robust population screening, for which virus testing will often be central. After infection, individuals undergo a period of incubation during which viral titers are too low to detect, followed by exponential viral growth, leading to peak viral load and infectiousness and ending with declining titers and clearance. Given the pattern of viral load kinetics, we model the effectiveness of repeated population screening considering test sensitivities, frequency, and sample-to-answer reporting time. These results demonstrate that effective screening depends largely on frequency of testing and speed of reporting and is only marginally improved by high test sensitivity. We therefore conclude that screening should prioritize accessibility, frequency, and sample-to-answer time; analytical limits of detection should be secondary.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Mass Screening/methods , Viral Load , Asymptomatic Infections , Calibration , Computer Simulation , Epidemics , Humans , Kinetics , Limit of Detection , Models, Theoretical , Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Time Factors
8.
Nat Commun ; 12(1): 311, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1026821

ABSTRACT

Early in the COVID-19 pandemic, predictions of international outbreaks were largely based on imported cases from Wuhan, China, potentially missing imports from other cities. We provide a method, combining daily COVID-19 prevalence and flight passenger volume, to estimate importations from 18 Chinese cities to 43 international destinations, including 26 in Africa. Global case importations from China in early January came primarily from Wuhan, but the inferred source shifted to other cities in mid-February, especially for importations to African destinations. We estimate that 10.4 (6.2 - 27.1) COVID-19 cases were imported to these African destinations, which exhibited marked variation in their magnitude and main sources of importation. We estimate that 90% of imported cases arrived between 17 January and 7 February, prior to the first case detections. Our results highlight the dynamic role of source locations, which can help focus surveillance and response efforts.


Subject(s)
COVID-19/epidemiology , Pandemics , Travel , Africa/epidemiology , Aircraft , COVID-19/transmission , China/epidemiology , Humans , Models, Theoretical , Prevalence , SARS-CoV-2 , Travel/statistics & numerical data
9.
PLoS Comput Biol ; 16(12): e1008409, 2020 12.
Article in English | MEDLINE | ID: covidwho-966830

ABSTRACT

Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.


Subject(s)
Basic Reproduction Number , COVID-19 , COVID-19/epidemiology , COVID-19/transmission , Computational Biology , Humans , Models, Statistical , SARS-CoV-2
10.
medRxiv ; 2020 Sep 08.
Article in English | MEDLINE | ID: covidwho-827482

ABSTRACT

The COVID-19 pandemic has created a public health crisis. Because SARS-CoV-2 can spread from individuals with pre-symptomatic, symptomatic, and asymptomatic infections, the re-opening of societies and the control of virus spread will be facilitated by robust surveillance, for which virus testing will often be central. After infection, individuals undergo a period of incubation during which viral titers are usually too low to detect, followed by an exponential viral growth, leading to a peak viral load and infectiousness, and ending with declining viral levels and clearance. Given the pattern of viral load kinetics, we model surveillance effectiveness considering test sensitivities, frequency, and sample-to-answer reporting time. These results demonstrate that effective surveillance depends largely on frequency of testing and the speed of reporting, and is only marginally improved by high test sensitivity. We therefore conclude that surveillance should prioritize accessibility, frequency, and sample-to-answer time; analytical limits of detection should be secondary.

SELECTION OF CITATIONS
SEARCH DETAIL