Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Infect Dis ; 113: 308-317, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1474623

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health emergency. T-cell receptors (TCRs) are crucial mediators of antiviral adaptive immunity. This study sought to comprehensively characterize the TCR repertoire changes in patients with COVID-19. METHODS: A large sample size multi-center randomized controlled trial was implemented to study the features of the TCR repertoire and identify COVID-19 disease-related TCR sequences. RESULTS: It was found that some T-cell receptor beta chain (TCRß) features differed markedly between COVID-19 patients and healthy controls, including decreased repertoire diversity, longer complementarity-determining region 3 (CDR3) length, skewed utilization of the TCRß variable gene/joining gene (TRBV/J), and a high degree of TCRß sharing in COVID-19 patients. Moreover, this analysis showed that TCR repertoire diversity declines with aging, which may be a cause of the higher infection and mortality rates in elderly patients. Importantly, a set of TCRß clones that can distinguish COVID-19 patients from healthy controls with high accuracy was identified. Notably, this diagnostic model demonstrates 100% specificity and 82.68% sensitivity at 0-3 days post diagnosis. CONCLUSIONS: This study lays the foundation for immunodiagnosis and the development of medicines and vaccines for COVID-19 patients.

2.
Front Immunol ; 12: 716075, 2021.
Article in English | MEDLINE | ID: covidwho-1359192

ABSTRACT

The existence of asymptomatic and re-detectable positive coronavirus disease 2019 (COVID-19) patients presents the disease control challenges of COVID-19. Most studies on immune responses in COVID-19 have focused on moderately or severely symptomatic patients; however, little is known about the immune response in asymptomatic and re-detectable positive (RP) patients. Here we performed a comprehensive analysis of the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from 48 COVID-19 patients which included 8 asymptomatic, 13 symptomatic, 15 recovered and 12 RP patients. The weighted gene co-expression network analysis (WGCNA) identified six co-expression modules, of which the turquoise module was positively correlated with the asymptomatic, symptomatic, and recovered COVID-19 patients. The red module positively correlated with symptomatic patients only and the blue and brown modules positively correlated with the RP patients. The analysis by single sample gene set enrichment analysis (ssGSEA) revealed a lower level of IFN response and complement activation in the asymptomatic patients compared with the symptomatic, indicating a weaker immune response of the PBMCs in the asymptomatic patients. In addition, gene set enrichment analysis (GSEA) analysis showed the enrichment of TNFα/NF-κB and influenza infection in the RP patients compared with the recovered patients, indicating a hyper-inflammatory immune response in the PBMC of RP patients. Thus our findings could extend our understanding of host immune response during the progression of COVID-19 disease and assist clinical management and the immunotherapy development for COVID-19.


Subject(s)
Asymptomatic Diseases , COVID-19/immunology , Carrier State/immunology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , Transcriptome/genetics , Adult , Carrier State/virology , Complement Activation/immunology , Female , Gene Expression Profiling , Humans , Inflammation/immunology , Influenza, Human/complications , Interferons/blood , Interferons/immunology , Male , Middle Aged , NF-kappa B/metabolism , Transcriptome/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
3.
Int J Nanomedicine ; 16: 4959-4984, 2021.
Article in English | MEDLINE | ID: covidwho-1334842

ABSTRACT

Antiviral drugs (AvDs) are the primary resource in the global battle against viruses, including the recent fight against corona virus disease 2019 (COVID-19). Most AvDs require multiple medications, and their use frequently leads to drug resistance, since they have poor oral bioavailability and low efficacy due to their low solubility/low permeability. Characterizing the in vivo metabolism and pharmacokinetic characteristics of AvDs may help to solve the problems associated with AvDs and enhance their efficacy. In this review of AvDs, we systematically investigated their structure-based metabolic reactions and related enzymes, their cellular pharmacology, and the effects of metabolism on AvD pharmacodynamics and pharmacokinetics. We further assessed how delivery systems achieve better metabolism and pharmacology of AvDs. This review suggests that suitable nanosystems may help to achieve better pharmacological activity and pharmacokinetic behavior of AvDs by altering drug metabolism through the utilization of advanced nanotechnology and appropriate administration routes. Notably, such AvDs as ribavirin, remdesivir, favipiravir, chloroquine, lopinavir and ritonavir have been confirmed to bind to the severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) receptor and thus may represent anti-COVID-19 treatments. Elucidating the metabolic and pharmacokinetic characteristics of AvDs may help pharmacologists to identify new formulations with high bioavailability and efficacy and help physicians to better treat virus-related diseases, including COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , COVID-19/metabolism , Drug Delivery Systems , SARS-CoV-2/drug effects , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans
4.
Comput Educ ; 168: 104211, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1171166

ABSTRACT

Amid the coronavirus outbreak, many countries are facing a dramatic situation in terms of the global economy and human social activities, including education. The shutdown of schools is affecting many students around the world, with face-to-face classes suspended. Many countries facing the disastrous situation imposed class suspension at an early stage of the coronavirus outbreak, and Asia was one of the earliest regions to implement live online learning. Despite previous research on online teaching and learning, students' readiness to participate in the real-time online learning implemented during the coronavirus outbreak is not yet well understood. This study explored several key factors in the research framework related to learning motivation, learning readiness and student's self-efficacy in participating in live online learning during the coronavirus outbreak, taking into account gender differences and differences among sub-degree (SD), undergraduate (UG) and postgraduate (PG) students. Technology readiness was used instead of conventional online/internet self-efficacy to determine students' live online learning readiness. The hypothetical model was validated using confirmatory factor analysis (CFA). The results revealed no statistically significant differences between males and females. On the other hand, the mean scores for PG students were higher than for UG and SD students based on the post hoc test. We argue that during the coronavirus outbreak, gender differences were reduced because students are forced to learn more initiatively. We also suggest that students studying at a higher education degree level may have higher expectations of their academic achievement and were significantly different in their online learning readiness. This study has important implications for educators in implementing live online learning, particularly for the design of teaching contexts for students from different educational levels. More virtual activities should be considered to enhance the motivation for students undertaking lower-level degrees, and encouragement of student-to-student interactions can be considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...