Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-307415

ABSTRACT

During the COVID-19 pandemic, governments have tried to keep their territories safe by isolating themselves from others, limiting non-essential travel and imposing mandatory quarantines for travelers. While large-scale quarantine has been the most successful short-term policy, it is unsustainable over long periods as it exerts enormous costs on societies. As a result, governments which have been able to partially control the spread of the disease have been deciding to reopen businesses. However, the WHO has warned about the risks of re-opening prematurely, as is playing out in some countries such as Spain, France and various states in the US such as California, Florida, Arizona, and Texas. Thus, it is urgent to consider a flexible policy that limits transmission without requiring large scale and damaging quarantines. Here, we have designed a multi-level quarantine process based on the mobility patterns of individuals and the severity of COVID-19 contagion in the US. By identifying the natural boundaries of social mobility, policymakers can impose travel restrictions that are minimally disruptive to social and economic activity. The dynamics of social fragmentation during the COVID-19 outbreak are analyzed by applying the Louvain method with modularity optimization to weekly mobility networks. In a multi-scale community detection process, using the locations of confirmed cases, natural break points as well as high risk areas for contagion are identified. At the smaller scales, for communities with a higher number of confirmed cases, contact tracing and associated quarantine policies is increasingly important and can be informed by the community structure.

2.
R Soc Open Sci ; 8(12): 210865, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1583912

ABSTRACT

During the COVID-19 pandemic, governments have attempted to control infections within their territories by implementing border controls and lockdowns. While large-scale quarantine has been the most successful short-term policy, the enormous costs exerted by lockdowns over long periods are unsustainable. As such, developing more flexible policies that limit transmission without requiring large-scale quarantine is an urgent priority. Here, the dynamics of dismantled community mobility structures within US society during the COVID-19 outbreak are analysed by applying the Louvain method with modularity optimization to weekly datasets of mobile device locations. Our networks are built based on individuals' movements from February to May 2020. In a multi-scale community detection process using the locations of confirmed cases, natural break points from mobility patterns as well as high risk areas for contagion are identified at three scales. Deviations from administrative boundaries were observed in detected communities, indicating that policies informed by assumptions of disease containment within administrative boundaries do not account for high risk patterns of movement across and through these boundaries. We have designed a multi-level quarantine process that takes these deviations into account based on the heterogeneity in mobility patterns. For communities with high numbers of confirmed cases, contact tracing and associated quarantine policies informed by underlying dismantled community mobility structures is of increasing importance.

SELECTION OF CITATIONS
SEARCH DETAIL