ABSTRACT
Despite high vaccination rates in the Netherlands, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate. Longitudinal sewage surveillance was implemented along with the notification of cases as two parts of the surveillance pyramid to validate the use of sewage for surveillance, as an early warning tool, and to measure the effect of interventions. Sewage samples were collected from nine neighborhoods between September 2020 and November 2021. Comparative analysis and modeling were performed to understand the correlation between wastewater and case trends. Using high resolution sampling, normalization of wastewater SARS-CoV-2 concentrations, and 'normalization' of reported positive tests for testing delay and intensity, the incidence of reported positive tests could be modeled based on sewage data, and trends in both surveillance systems coincided. The high collinearity implied that high levels of viral shedding around the onset of disease largely determined SARS-CoV-2 levels in wastewater, and that the observed relationship was independent of variants of concern and vaccination levels. Sewage surveillance alongside a large-scale testing effort where 58 % of a municipality was tested, indicated a five-fold difference in the number of SARS-CoV-2-positive individuals and reported cases through standard testing. Where trends in reported positive cases were biased due to testing delay and testing behavior, wastewater surveillance can objectively display SARS-CoV-2 dynamics for both small and large locations and is sensitive enough to measure small variations in the number of infected individuals within or between neighborhoods. With the transition to a post-acute phase of the pandemic, sewage surveillance can help to keep track of re-emergence, but continued validation studies are needed to assess the predictive value of sewage surveillance with new variants. Our findings and model aid in interpreting SARS-CoV-2 surveillance data for public health decision-making and show its potential as one of the pillars of future surveillance of (re)emerging viruses.
Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring , SewageABSTRACT
Monitoring of SARS-CoV-2 in wastewater (WW) is a promising tool for epidemiological surveillance, correlating not only viral RNA levels with the infection dynamics within the population, but also to viral diversity. However, the complex mixture of viral lineages in WW samples makes tracking of specific variants or lineages circulating in the population a challenging task. We sequenced sewage samples of 9 WW-catchment areas within the city of Rotterdam, used specific signature mutations from individual SARS-CoV-2 lineages to estimate their relative abundances in WW and compared them against those observed in clinical genomic surveillance of infected individuals between September 2020 and December 2021. We showed that especially for dominant lineages, the median of the frequencies of signature mutations coincides with the occurrence of those lineages in Rotterdam's clinical genomic surveillance. This, along with digital droplet RT-PCR targeting signature mutations of specific variants of concern (VOCs), showed that several VOCs emerged, became dominant and were replaced by the next VOC in Rotterdam at different time points during the study. In addition, single nucleotide variant (SNV) analysis provided evidence that spatio-temporal clusters can also be discerned from WW samples. We were able to detect specific SNVs in sewage, including one resulting in the Q183H amino acid change in the Spike gene, that was not captured by clinical genomic surveillance. Our results highlight the potential use of WW samples for genomic surveillance, increasing the set of epidemiological tools to monitor SARS-CoV-2 diversity.
Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2/genetics , Sewage , COVID-19/epidemiologyABSTRACT
Over the course of the Corona Virus Disease-19 (COVID-19) pandemic in 2020-2022, monitoring of the severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS-CoV-2 RNA) in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalisation is required to account for the dilution rate of the domestic wastewater that can strongly vary due to time- and location-dependent sewer inflow of runoff, industrial discharges and extraneous waters. The standard approach in sewage surveillance is normalisation using flow measurements, although flow based normalisation is not effective in case the wastewater volume sampled does not match the wastewater volume produced. In this paper, two alternative normalisation methods, using electrical conductivity and crAssphage have been studied and compared with the standard approach using flow measurements. For this, a total of 1116 24-h flow-proportional samples have been collected between September 2020 and August 2021 at nine monitoring locations. In addition, 221 stool samples have been analysed to determine the daily crAssphage load per person. Results show that, although crAssphage shedding rates per person vary greatly, on a population-level crAssphage loads per person per day were constant over time and similar for all catchments. Consequently, crAssphage can be used as a quantitative biomarker for populations above 5595 persons. Electrical conductivity is particularly suitable to determine dilution rates relative to dry weather flow concentrations. The overall conclusion is that flow normalisation is necessary to reliably determine short-term trends in virus circulation, and can be enhanced using crAssphage and/or electrical conductivity measurement as a quality check.
Subject(s)
COVID-19 , Wastewater , Humans , Sewage/analysis , SARS-CoV-2 , RNA, Viral , Water Pollution/analysis , Environmental Monitoring , Feces/chemistry , Water Microbiology , COVID-19/epidemiologyABSTRACT
For community-level monitoring, the European Commission under the EU Sewage Sentinel System recommends wastewater-based SARS-CoV-2 surveillance. Tracking SARS-CoV-2 variants in a community is pivotal for appropriate public health response. Genome sequencing of SARS-CoV-2 in wastewater samples for tracking variants is challenging, often resulting in low coverage genome sequences, thereby impeding the detection of the SARS-CoV-2 mutations. Therefore, we aimed at high-coverage SARS-CoV-2 genome sequences from sewage samples which we successfully accomplished. This first pan-European surveillance compared the mutation profiles associated with the variants of concerns: B.1.1.7, P.1, B.1.351 and B.1.617.2 across 20 European countries, including 54 municipalities. The results highlight that SARS-CoV-2 variants detected in the wastewater samples mirror the variants profiles reported in clinical data. This study demonstrated that >98% coverage of SARS-CoV-2 genomic sequences is possible and can be used to track SARS-CoV-2 mutations in wastewater to support identifying variants circulating in a city at the community level.
ABSTRACT
Wastewater surveillance has shown to be a valuable and efficient tool to obtain information about the trends of COVID-19 in the community. Since the recent emergence of new variants, associated with increased transmissibility and/or antibody escape (variants of concern), there is an urgent need for methods that enable specific and timely detection and quantification of the occurrence of these variants in the community. In this study, we demonstrate the use of RT-ddPCR on wastewater samples for specific detection of mutation N501Y. This assay enabled simultaneous enumeration of lineage B.1.351 (containing the 501Y mutation) and Wild Type (WT, containing 501N) SARS-CoV-2 RNA. Detection of N501Y was possible in samples with mixtures of WT with low proportions of B.1.351 (0.5%) and could accurately determine the proportion of N501Y and WT in mixtures of SARS-CoV-2 RNA. The application to raw sewage samples from the cities of Amsterdam and Utrecht demonstrated that this method can be applied to wastewater samples. The emergence of N501Y in Amsterdam and Utrecht wastewater aligned with the emergence of B.1.1.7 as causative agent of COVID-19 in the Netherlands, indicating that RT-ddPCR of wastewater samples can be used to monitor the emergence of the N501Y mutation in the community. It also indicates that RT-ddPCR could be used for sensitive and accurate monitoring of current (like K417N, K417T, E484K, L452R) or future mutations present in SARS-CoV-2 variants of concern. Monitoring these mutations can be used to obtain insight in the introduction and spread of VOC and support public health decision-making regarding measures to limit viral spread or allocation of testing or vaccination.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , RNA, Viral , Reverse Transcriptase Polymerase Chain Reaction , WastewaterABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a major global health problem, and public health surveillance is crucial to monitor and prevent virus spread. Wastewater-based epidemiology has been proposed as an addition to disease-based surveillance because virus is shed in the feces of ≈40% of infected persons. We used next-generation sequencing of sewage samples to evaluate the diversity of SARS-CoV-2 at the community level in the Netherlands and Belgium. Phylogenetic analysis revealed the presence of the most prevalent clades (19A, 20A, and 20B) and clustering of sewage samples with clinical samples from the same region. We distinguished multiple clades within a single sewage sample by using low-frequency variant analysis. In addition, several novel mutations in the SARS-CoV-2 genome were detected. Our results illustrate how wastewater can be used to investigate the diversity of SARS-CoV-2 viruses circulating in a community and identify new outbreaks.
Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , Humans , Netherlands/epidemiology , Phylogeny , WastewaterABSTRACT
Analysing wastewater can be used to track infectious disease agents that are shed via stool and urine. Sewage surveillance of SARS-CoV-2 has been suggested as a tool to determine the extent of COVID-19 in cities and serve as an early warning for (re-)emergence of SARS-CoV-2 circulation in communities. The focus of this review is on the strength of evidence, opportunities and challenges for the application of sewage surveillance to inform public health decision making. Considerations for undertaking sampling programs are reviewed including sampling sites, strategies, sample transport, storage and quantification methods; together with the approach and evidence base for quantifying prevalence of infection from measured wastewater concentration. Published SARS-CoV-2 sewage surveillance studies (11 peer reviewed and 10 preprints) were reviewed to demonstrate the current status of implementation to support public health decisions. Although being very promising, a number of areas were identified requiring additional research to further strengthen this approach and take full advantage of its potential. In particular, design of adequate sampling strategies, spatial and temporal resolution of sampling, sample storage, replicate sampling and analysis, controls for the molecular methods used for the quantification of SARS-CoV-2 RNA in wastewater. The use of appropriate prevalence data and methods to correlate or even translate SARS-CoV-2 concentrations in wastewater to prevalence of virus shedders in the population is discussed.