Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Lancet Respir Med ; 9(11): 1255-1265, 2021 11.
Article in English | MEDLINE | ID: covidwho-1594095

ABSTRACT

BACKGROUND: Heterologous vaccine regimens have been widely discussed as a way to mitigate intermittent supply shortages and to improve immunogenicity and safety of COVID-19 vaccines. We aimed to assess the reactogenicity and immunogenicity of heterologous immunisations with ChAdOx1 nCov-19 (AstraZeneca, Cambridge, UK) and BNT162b2 (Pfizer-BioNtech, Mainz, Germany) compared with homologous BNT162b2 and ChAdOx1 nCov-19 immunisation. METHODS: This is an interim analysis of a prospective observational cohort study enrolling health-care workers in Berlin (Germany) who received either homologous ChAdOx1 nCov-19 or heterologous ChAdOx1 nCov-19-BNT162b2 vaccination with a 10-12-week vaccine interval or homologous BNT162b2 vaccination with a 3-week vaccine interval. We assessed reactogenicity after the first and second vaccination by use of electronic questionnaires on days 1, 3, 5, and 7. Immunogenicity was measured by the presence of SARS-CoV-2-specific antibodies (full spike-IgG, S1-IgG, and RBD-IgG), by an RBD-ACE2 binding inhibition assay (surrogate SARS-CoV-2 virus neutralisation test), a pseudovirus neutralisation assay against two variants of concerns (alpha [B.1.1.7] and beta [B.1.351]), and anti-S1-IgG avidity. T-cell reactivity was measured by IFN-γ release assay. FINDINGS: Between Dec 27, 2020, and June 14, 2021, 380 participants were enrolled in the study, with 174 receiving homologous BNT162b2 vaccination, 38 receiving homologous ChAdOx1 nCov-19 vaccination, and 104 receiving ChAdOx1 nCov-19-BNT162b2 vaccination. Systemic symptoms were reported by 103 (65%, 95% CI 57·1-71·8) of 159 recipients of homologous BNT162b2, 14 (39%, 24·8-55·1) of 36 recipients of homologous ChAdOx1 nCov-19, and 51 (49%, 39·6-58·5) of 104 recipients of ChAdOx1 nCov-19-BNT162b2 after the booster immunisation. Median anti-RBD IgG levels 3 weeks after boost immunisation were 5·4 signal to cutoff ratio (S/co; IQR 4·8-5·9) in recipients of homologous BNT162b2, 4·9 S/co (4·3-5·6) in recipients of homologous ChAdOx1 nCov-19, and 5·6 S/co (5·1-6·1) in recipients of ChAdOx1 nCov-19- BNT162b2. Geometric mean of 50% inhibitory dose against alpha and beta variants were highest in recipients of ChAdOx1 nCov-19-BNT162b2 (956·6, 95% CI 835·6-1095, against alpha and 417·1, 349·3-498·2, against beta) compared with those in recipients of homologous ChAdOx1 nCov-19 (212·5, 131·2-344·4, against alpha and 48·5, 28·4-82·8, against beta; both p<0·0001) or homologous BNT162b2 (369·2, 310·7-438·6, against alpha and 72·4, 60·5-86·5, against beta; both p<0·0001). SARS-CoV-2 S1 T-cell reactivity 3 weeks after boost immunisation was highest in recipients of ChAdOx1 nCov-19-BNT162b2 (median IFN-γ concentration 4762 mIU/mL, IQR 2723-8403) compared with that in recipients of homologous ChAdOx1 nCov-19 (1061 mIU/mL, 599-2274, p<0·0001) and homologous BNT162b2 (2026 mIU/mL, 1459-4621, p=0·0008) vaccination. INTERPRETATION: The heterologous ChAdOx1 nCov-19-BNT162b2 immunisation with 10-12-week interval, recommended in Germany, is well tolerated and improves immunogenicity compared with homologous ChAdOx1 nCov-19 vaccination with 10-12-week interval and BNT162b2 vaccination with 3-week interval. Heterologous prime-boost immunisation strategies for COVID-19 might be generally applicable. FUNDING: Forschungsnetzwerk der Universitätsmedizin zu COVID-19, the German Ministry of Education and Research, Zalando SE.

2.
Cell ; 2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1588146

ABSTRACT

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.

3.
EClinicalMedicine ; 40: 101099, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1385454

ABSTRACT

Background: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. Methods: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID-19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). Findings: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted p-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. Interpretation: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2. Funding: Funded by Roche Sequencing Solutions, Inc.

4.
Clin Microbiol Infect ; 27(10): 1520.e7-1520.e10, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1297038

ABSTRACT

OBJECTIVES: Dexamethasone has become the standard of care for severe coronavirus disease 2019 (COVID-19), but its virological impact is poorly understood. The objectives of this work were to characterize the kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) concentration in the upper respiratory tract (URT) and the antibody response in patients with (D+) and without (D-) dexamethasone treatment. METHODS: Data and biosamples from hospitalized patients with severe COVID-19, enrolled between 4th March and 11th December 2020 in a prospective observational study, were analysed. SARS-CoV-2 virus concentration in serial URT samples was measured using RT-PCR. SARS-CoV-2-specific immunoglobulins A and G (IgA and IgG) were measured in serum samples using S1-ELISA. RESULTS: We compared 101 immunocompetent patients who received dexamethasone (according to the inclusion criteria and dosage determined in the RECOVERY trial) to 93 immunocompetent patients with comparable disease severity from the first months of the pandemic, who had not been treated with dexamethasone or other glucocorticoids. We found no inter-group differences in virus concentration kinetics, duration of presence of viral loads >106 viral copies/mL (D+ median 17 days (IQR 13-24), D- 19 days (IQR 13-29)), or time from symptom onset until seroconversion (IgA: D+ median 11.5 days (IQR 11-12), D- 14 days (IQR 11.5-15.75); IgG: D+ 13 days (IQR 12-14.5), D- 12 days (IQR 11-15)). CONCLUSION: Dexamethasone does not appear to lead to a change in virus clearance or a delay in antibody response in immunocompetent patients hospitalized with severe COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19/drug therapy , Dexamethasone/therapeutic use , SARS-CoV-2/isolation & purification , Anti-Inflammatory Agents/therapeutic use , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Hospitalization , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Kinetics , Prospective Studies , RNA, Viral/analysis , Respiratory System/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Seroconversion , Viral Load
5.
Cell Syst ; 12(8): 780-794.e7, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1267622

ABSTRACT

COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.


Subject(s)
Biomarkers/analysis , COVID-19/pathology , Disease Progression , Proteome/physiology , Age Factors , Blood Cell Count , Blood Gas Analysis , Enzyme Activation , Humans , Inflammation/pathology , Machine Learning , Prognosis , Proteomics , SARS-CoV-2/immunology
6.
Emerg Infect Dis ; 27(8): 2174-2178, 2021 08.
Article in English | MEDLINE | ID: covidwho-1261342

ABSTRACT

We detected delayed and reduced antibody and T-cell responses after BNT162b2 vaccination in 71 elderly persons (median age 81 years) compared with 123 healthcare workers (median age 34 years) in Germany. These data emphasize that nonpharmaceutical interventions for coronavirus disease remain crucial and that additional immunizations for the elderly might become necessary.


Subject(s)
COVID-19 , Adult , Aged , Aged, 80 and over , COVID-19 Vaccines , Germany/epidemiology , Humans , SARS-CoV-2 , T-Lymphocytes , Vaccination
7.
Emerg Infect Dis ; 27(8): 2169-2173, 2021 08.
Article in English | MEDLINE | ID: covidwho-1261341

ABSTRACT

One week after second vaccinations were administered, an outbreak of B.1.1.7 lineage severe acute respiratory syndrome coronavirus 2 infections occurred in a long-term care facility in Berlin, Germany, affecting 16/20 vaccinated and 4/4 unvaccinated residents. Despite considerable viral loads, vaccinated residents experienced mild symptoms and faster time to negative test results.


Subject(s)
COVID-19 , SARS-CoV-2 , Berlin , Disease Outbreaks , Germany/epidemiology , Humans , Long-Term Care , Vaccination
8.
Infection ; 49(4): 703-714, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198523

ABSTRACT

PURPOSE: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. METHODS: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. RESULTS: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. CONCLUSIONS: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/physiology , COVID-19/therapy , Cohort Studies , Germany/epidemiology , Hospitalization , Humans , Hypertension/complications , Kinetics , Prospective Studies , Respiration, Artificial , Risk Factors , Tertiary Care Centers , Time Factors , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...