Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell ; 2022.
Article in English | ScienceDirect | ID: covidwho-1778028

ABSTRACT

Summary We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 to 9 months and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently re-activated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA vaccine-induced immunity over time through 3 or more antigen exposures.

2.
Front Immunol ; 13: 834988, 2022.
Article in English | MEDLINE | ID: covidwho-1753370

ABSTRACT

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Complement C5a/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/physiology , Thromboembolism/immunology , Adult , Aminopyridines/pharmacology , Cells, Cultured , Female , Hospitalization , Humans , Male , Morpholines/pharmacology , Platelet Activation , Pyrimidines/pharmacology , Severity of Illness Index , Signal Transduction , Syk Kinase/antagonists & inhibitors
3.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-330559

ABSTRACT

How host immune dysregulation affects recovery from COVID-19 infection in patients with cancer remains unclear. We analyzed cellular and humoral immune responses in 103 patients with prior COVID-19 infection, over 20% of whom had delayed viral clearance. Patients with prolonged disease demonstrated loss of antibodies to nucleocapsid and spike proteins with a compensatory increase in IFN-γ production by COVID-specific T-cells. High-dimensional analysis of peripheral blood samples revealed increased CD8+ effector T-cell differentiation and a broad but poorly converged COVID-specific TCR repertoire in patients with prolonged disease, consistent with an ongoing CD8+ T-cell response to persistent viral antigen. Conversely, patients with a CD4+ dominant immunophenotype had a much lower incidence of prolonged disease and exhibited a highly clonal TCR repertoire. These results identify a unique role for B-cells and CD4+ T-cells in promoting durable SARS-CoV-2 clearance, thereby underscoring the importance of coordinated cellular and humoral immunity in promoting long-term disease control.

4.
J Infect Dis ; 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1672211

ABSTRACT

Some risk factors for severe COVID-19 have been identified, including age, race, and obesity. However, 20-50% of severe cases occur in the absence of these factors. Cytomegalovirus (CMV) is a herpes virus that infects ~50% of all individuals worldwide and is one of the most significant non-genetic determinants of immune system. We hypothesized that latent CMV infection might influence the severity of COVID-19. Our analyses demonstrate that CMV seropositivity associates with more than twice the risk of hospitalization due to SARS-CoV-2 infection. Immune profiling of blood and CMV DNA qPCR in a subset of patients for whom respiratory tract samples were available revealed altered T cell activation profiles in absence of extensive CMV replication in the upper respiratory tract. These data suggest a potential role for CMV-driven immune perturbations in affecting the outcome of SARS-CoV-2 infection and may have implications for the discrepancies in COVID-19 severity between different human populations.

5.
Cell ; 185(6): 1008-1024.e15, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1664732

ABSTRACT

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.

6.
J Clin Invest ; 131(24)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1591538

ABSTRACT

BackgroundAntibody-based strategies for COVID-19 have shown promise in prevention and treatment of early disease. COVID-19 convalescent plasma (CCP) has been widely used but results from randomized trials supporting its benefit in hospitalized patients with pneumonia are limited. Here, we assess the efficacy of CCP in severely ill, hospitalized adults with COVID-19 pneumonia.MethodsWe performed a randomized control trial (PennCCP2), with 80 adults hospitalized with COVID-19 pneumonia, comparing up to 2 units of locally sourced CCP plus standard care versus standard care alone. The primary efficacy endpoint was comparison of a clinical severity score. Key secondary outcomes include 14- and 28-day mortality, 14- and 28-day maximum 8-point WHO ordinal score (WHO8) score, duration of supplemental oxygenation or mechanical ventilation, respiratory SARS-CoV-2 RNA, and anti-SARS-CoV-2 antibodies.ResultsEighty hospitalized adults with confirmed COVID-19 pneumonia were enrolled at median day 6 of symptoms and day 1 of hospitalization; 60% were anti-SARS-CoV-2 antibody seronegative. Participants had a median of 3 comorbidities, including risk factors for severe COVID-19 and immunosuppression. CCP treatment was safe and conferred significant benefit by clinical severity score (median [MED] and interquartile range [IQR] 10 [5.5-30] vs. 7 [2.75-12.25], P = 0.037) and 28-day mortality (n = 10, 26% vs. n = 2, 5%; P = 0.013). All other prespecified outcome measures showed weak evidence toward benefit of CCP.ConclusionTwo units of locally sourced CCP administered early in hospitalization to majority seronegative participants conferred a significant benefit in clinical severity score and 28-day mortality. Results suggest CCP may benefit select populations, especially those with comorbidities who are treated early.Trial RegistrationClinicalTrials.gov NCT04397757.FundingUniversity of Pennsylvania.


Subject(s)
COVID-19/therapy , Pneumonia, Viral/therapy , SARS-CoV-2 , Adult , Aged , Antibodies, Viral , Female , Hospitalization , Humans , Immune Tolerance , Immunization, Passive/methods , Incidence , Male , Middle Aged , Oxygen/therapeutic use , RNA, Viral , Respiration, Artificial , Risk Factors , Treatment Outcome
7.
Infect Control Hosp Epidemiol ; : 1-9, 2021 Dec 02.
Article in English | MEDLINE | ID: covidwho-1569174

ABSTRACT

OBJECTIVE: To describe the cumulative seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies during the coronavirus disease 2019 (COVID-19) pandemic among employees of a large pediatric healthcare system. DESIGN, SETTING, AND PARTICIPANTS: Prospective observational cohort study open to adult employees at the Children's Hospital of Philadelphia, conducted April 20-December 17, 2020. METHODS: Employees were recruited starting with high-risk exposure groups, utilizing e-mails, flyers, and announcements at virtual town hall meetings. At baseline, 1 month, 2 months, and 6 months, participants reported occupational and community exposures and gave a blood sample for SARS-CoV-2 antibody measurement by enzyme-linked immunosorbent assays (ELISAs). A post hoc Cox proportional hazards regression model was performed to identify factors associated with increased risk for seropositivity. RESULTS: In total, 1,740 employees were enrolled. At 6 months, the cumulative seroprevalence was 5.3%, which was below estimated community point seroprevalence. Seroprevalence was 5.8% among employees who provided direct care and was 3.4% among employees who did not perform direct patient care. Most participants who were seropositive at baseline remained positive at follow-up assessments. In a post hoc analysis, direct patient care (hazard ratio [HR], 1.95; 95% confidence interval [CI], 1.03-3.68), Black race (HR, 2.70; 95% CI, 1.24-5.87), and exposure to a confirmed case in a nonhealthcare setting (HR, 4.32; 95% CI, 2.71-6.88) were associated with statistically significant increased risk for seropositivity. CONCLUSIONS: Employee SARS-CoV-2 seroprevalence rates remained below the point-prevalence rates of the surrounding community. Provision of direct patient care, Black race, and exposure to a confirmed case in a nonhealthcare setting conferred increased risk. These data can inform occupational protection measures to maximize protection of employees within the workplace during future COVID-19 waves or other epidemics.

8.
Nat Med ; 27(11): 1990-2001, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526094

ABSTRACT

SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.


Subject(s)
COVID-19 Vaccines/therapeutic use , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antigens, CD20/immunology , COVID-19/prevention & control , Case-Control Studies , Chlorocebus aethiops , HEK293 Cells , Humans , Immunity, Cellular , Immunity, Humoral/drug effects , Immunity, Humoral/physiology , Immunotherapy/methods , Longitudinal Studies , Multiple Sclerosis/blood , RNA, Messenger/immunology , RNA, Viral/immunology , Rituximab/pharmacology , Rituximab/therapeutic use , SARS-CoV-2/genetics , Vaccination , Vero Cells
9.
J Clin Invest ; 131(24)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1523124

ABSTRACT

BackgroundAntibody-based strategies for COVID-19 have shown promise in prevention and treatment of early disease. COVID-19 convalescent plasma (CCP) has been widely used but results from randomized trials supporting its benefit in hospitalized patients with pneumonia are limited. Here, we assess the efficacy of CCP in severely ill, hospitalized adults with COVID-19 pneumonia.MethodsWe performed a randomized control trial (PennCCP2), with 80 adults hospitalized with COVID-19 pneumonia, comparing up to 2 units of locally sourced CCP plus standard care versus standard care alone. The primary efficacy endpoint was comparison of a clinical severity score. Key secondary outcomes include 14- and 28-day mortality, 14- and 28-day maximum 8-point WHO ordinal score (WHO8) score, duration of supplemental oxygenation or mechanical ventilation, respiratory SARS-CoV-2 RNA, and anti-SARS-CoV-2 antibodies.ResultsEighty hospitalized adults with confirmed COVID-19 pneumonia were enrolled at median day 6 of symptoms and day 1 of hospitalization; 60% were anti-SARS-CoV-2 antibody seronegative. Participants had a median of 3 comorbidities, including risk factors for severe COVID-19 and immunosuppression. CCP treatment was safe and conferred significant benefit by clinical severity score (median [MED] and interquartile range [IQR] 10 [5.5-30] vs. 7 [2.75-12.25], P = 0.037) and 28-day mortality (n = 10, 26% vs. n = 2, 5%; P = 0.013). All other prespecified outcome measures showed weak evidence toward benefit of CCP.ConclusionTwo units of locally sourced CCP administered early in hospitalization to majority seronegative participants conferred a significant benefit in clinical severity score and 28-day mortality. Results suggest CCP may benefit select populations, especially those with comorbidities who are treated early.Trial RegistrationClinicalTrials.gov NCT04397757.FundingUniversity of Pennsylvania.


Subject(s)
COVID-19/therapy , Pneumonia, Viral/therapy , SARS-CoV-2 , Adult , Aged , Antibodies, Viral , Female , Hospitalization , Humans , Immune Tolerance , Immunization, Passive/methods , Incidence , Male , Middle Aged , Oxygen/therapeutic use , RNA, Viral , Respiration, Artificial , Risk Factors , Treatment Outcome
10.
Non-conventional in English | MEDLINE, Grey literature | ID: grc-750509

ABSTRACT

Limited data are available for pregnant women affected by SARS-CoV-2. Serological tests are critically important to determine exposure and immunity to SARS-CoV-2 within both individuals and populations. We completed SARS-CoV-2 serological testing of 1,293 parturient women at two centers in Philadelphia from April 4 to June 3, 2020. We tested 834 pre-pandemic samples collected in 2019 and 15 samples from COVID-19 recovered donors to validate our assay, which has a ~1% false positive rate. We found 80/1,293 (6.2%) of parturient women possessed IgG and/or IgM SARS-CoV-2-specific antibodies. We found race/ethnicity differences in seroprevalence rates, with higher rates in Black/non-Hispanic and Hispanic/Latino women. Of the 72 seropositive women who also received nasopharyngeal polymerase chain reaction testing during pregnancy, 46 (64%) were positive. Continued serologic surveillance among pregnant women may inform perinatal clinical practices and can potentially be used to estimate seroprevalence within the community.

11.
Science ; 374(6572): abm0829, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1467659

ABSTRACT

The durability of immune memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccination remains unclear. In this study, we longitudinally profiled vaccine responses in SARS-CoV-2­naïve and ­recovered individuals for 6 months after vaccination. Antibodies declined from peak levels but remained detectable in most subjects at 6 months. By contrast, mRNA vaccines generated functional memory B cells that increased from 3 to 6 months postvaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity. Recall responses to vaccination in individuals with preexisting immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and its variants for at least 6 months after mRNA vaccination.


Subject(s)
COVID-19 Vaccines/immunology , Immunologic Memory , SARS-CoV-2/genetics , SARS-CoV-2/immunology , /immunology , Humans
12.
Emerg Infect Dis ; 27(9): 2454-2458, 2021 09.
Article in English | MEDLINE | ID: covidwho-1435936

ABSTRACT

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.


Subject(s)
COVID-19 , Antibody Formation , COVID-19/immunology , COVID-19 Serological Testing , Humans , Nasopharynx , SARS-CoV-2 , Seroconversion
13.
Immunity ; 54(9): 2133-2142.e3, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1433401

ABSTRACT

SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Th1 Cells/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunologic Memory , Lectins, C-Type/metabolism , Lymphocyte Activation , Male , Middle Aged , Peptides/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
14.
Nat Med ; 27(11): 1990-2001, 2021 11.
Article in English | MEDLINE | ID: covidwho-1410406

ABSTRACT

SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.


Subject(s)
COVID-19 Vaccines/therapeutic use , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antigens, CD20/immunology , COVID-19/prevention & control , Case-Control Studies , Chlorocebus aethiops , HEK293 Cells , Humans , Immunity, Cellular , Immunity, Humoral/drug effects , Immunity, Humoral/physiology , Immunotherapy/methods , Longitudinal Studies , Multiple Sclerosis/blood , RNA, Messenger/immunology , RNA, Viral/immunology , Rituximab/pharmacology , Rituximab/therapeutic use , SARS-CoV-2/genetics , Vaccination , Vero Cells
15.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1369459

ABSTRACT

Some studies suggest that recent common coronavirus (CCV) infections are associated with reduced COVID-19 severity upon SARS-CoV-2 infection. We completed serological assays using samples collected from health care workers to identify antibody types associated with SARS-CoV-2 protection and COVID-19 symptom duration. Rare SARS-CoV-2 cross-reactive antibodies elicited by past CCV infections were not associated with protection; however, the duration of symptoms following SARS-CoV-2 infections was significantly reduced in individuals with higher common betacoronavirus (ßCoV) antibody titers. Since antibody titers decline over time after CCV infections, individuals in our cohort with higher ßCoV antibody titers were more likely recently infected with common ßCoVs compared with individuals with lower antibody titers. Therefore, our data suggest that recent ßCoV infections potentially limit the duration of symptoms following SARS-CoV-2 infections through mechanisms that do not involve cross-reactive antibodies. Our data are consistent with the emerging hypothesis that cellular immune responses elicited by recent common ßCoV infections transiently reduce symptom duration following SARS-CoV-2 infections.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19/immunology , Health Personnel , SARS-CoV-2/immunology , Adult , Cross Reactions , Female , Humans , Male , Middle Aged , Time Factors
16.
Sci Immunol ; 6(58)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1349998

ABSTRACT

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , RNA, Messenger , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
17.
Emerg Infect Dis ; 27(9): 2454-2458, 2021 09.
Article in English | MEDLINE | ID: covidwho-1291007

ABSTRACT

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.


Subject(s)
COVID-19 , Antibody Formation , COVID-19/immunology , COVID-19 Serological Testing , Humans , Nasopharynx , SARS-CoV-2 , Seroconversion
18.
JCO Oncol Pract ; 17(12): e1879-e1886, 2021 12.
Article in English | MEDLINE | ID: covidwho-1270943

ABSTRACT

PURPOSE: Multiple studies have demonstrated the negative impact of cancer care delays during the COVID-19 pandemic, and transmission mitigation techniques are imperative for continued cancer care delivery. We aimed to gauge the effectiveness of these measures at the University of Pennsylvania. METHODS: We conducted a longitudinal study of SARS-CoV-2 antibody seropositivity and seroconversion in patients presenting to infusion centers for cancer-directed therapy between May 21, 2020, and October 8, 2020. Participants completed questionnaires and had up to five serial blood collections. RESULTS: Of 124 enrolled patients, only two (1.6%) had detectable SARS-CoV-2 antibodies on initial blood draw, and no initially seronegative patients developed newly detectable antibodies on subsequent blood draw(s), corresponding to a seroconversion rate of 0% (95% CI, 0.0 TO 4.1%) over 14.8 person-years of follow up, with a median of 13 health care visits per patient. CONCLUSION: These results suggest that patients with cancer receiving in-person care at a facility with aggressive mitigation efforts have an extremely low likelihood of COVID-19 infection.


Subject(s)
COVID-19 , Neoplasms , Humans , Longitudinal Studies , Neoplasms/therapy , Pandemics , SARS-CoV-2 , Seroconversion
19.
J Pediatric Infect Dis Soc ; 10(5): 669-673, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1262143

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibody responses in children remain poorly characterized. Here, we show that pediatric patients with multisystem inflammatory syndrome in children (MIS-C) possess higher SARS-CoV-2 spike immunoglobulin G (IgG) titers compared with those with severe coronavirus disease 2019, likely reflecting a longer time since the onset of infection in MIS-C patients.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Systemic Inflammatory Response Syndrome/immunology , COVID-19 Serological Testing , Child , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , SARS-CoV-2 , Severity of Illness Index
20.
J Biochem ; 170(2): 299-306, 2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1153228

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has given rise to the devastating global pandemic. In most cases, SARS-CoV-2 infection results in the development of viral pneumonia and acute respiratory distress syndrome, known as 'coronavirus disease 2019' or COVID-19. Intriguingly, besides the respiratory tract, COVID-19 affects other organs and systems of the human body. COVID-19 patients with pre-existing cardiovascular disease have a higher risk of death, and SARS-CoV-2 infection itself may cause myocardial inflammation and injury. One possible explanation of such phenomena is the fact that SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as the receptor required for viral entry. ACE2 is expressed in the cells of many organs, including the heart. ACE2 functions as a carboxypeptidase that can cleave several endogenous substrates, including angiotensin II, thus regulating blood pressure and vascular tone. It remains largely unknown if the SARS-CoV-2 infection alters the enzymatic properties of ACE2, thereby contributing to cardiovascular complications in patients with COVID-19. Here, we demonstrate that ACE2 cleavage of des-Arg9-bradykinin substrate analogue is markedly accelerated, while cleavage of angiotensin II analogue is minimally affected by the binding of spike protein. These findings may have implications for a better understanding of COVID-19 pathogenesis.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Catalysis , Humans , Protein Binding , SARS-CoV-2/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL