Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1536467

ABSTRACT

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Subject(s)
COVID-19/pathology , COVID-19/virology , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/virology , Macrophages/pathology , Macrophages/virology , SARS-CoV-2/physiology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/diagnostic imaging , Cell Communication , Cohort Studies , Fibroblasts/pathology , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Mesenchymal Stem Cells/pathology , Phenotype , Proteome/metabolism , Receptors, Cell Surface/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Tomography, X-Ray Computed , Transcription, Genetic
2.
Microsc Microanal ; 27(4): 815-827, 2021 08.
Article in English | MEDLINE | ID: covidwho-1345523

ABSTRACT

Manual selection of targets in experimental or diagnostic samples by transmission electron microscopy (TEM), based on single overview and detail micrographs, has been time-consuming and susceptible to bias. Substantial information and throughput gain may now be achieved by the automated acquisition of virtually all structures in a given EM section. Resulting datasets allow the convenient pan-and-zoom examination of tissue ultrastructure with preserved microanatomical orientation. The technique is, however, critically sensitive to artifacts in sample preparation. We, therefore, established a methodology to prepare large-scale digitization samples (LDS) designed to acquire entire sections free of obscuring flaws. For evaluation, we highlight the supreme performance of scanning EM in transmission mode compared with other EM technology. The use of LDS will substantially facilitate access to EM data for a broad range of applications.


Subject(s)
Microscopy, Electron, Scanning , Specimen Handling , Cells , Microscopy, Electron, Transmission
3.
Nat Commun ; 12(1): 3818, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1279876

ABSTRACT

Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 µM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Animals , Antinematodal Agents/pharmacology , Autophagosomes/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , COVID-19/drug therapy , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Metabolome , Niclosamide/pharmacology , Organoids , SARS-CoV-2/isolation & purification , Spermidine/pharmacology , Spermine/pharmacology
4.
JAMA Neurol ; 78(8): 948-960, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1265359

ABSTRACT

Importance: Myalgia, increased levels of creatine kinase, and persistent muscle weakness have been reported in patients with COVID-19. Objective: To study skeletal muscle and myocardial inflammation in patients with COVID-19 who had died. Design, Setting, and Participants: This case-control autopsy series was conducted in a university hospital as a multidisciplinary postmortem investigation. Patients with COVID-19 or other critical illnesses who had died between March 2020 and February 2021 and on whom an autopsy was performed were included. Individuals for whom informed consent to autopsy was available and the postmortem interval was less than 6 days were randomly selected. Individuals who were infected with SARS-CoV-2 per polymerase chain reaction test results and had clinical features suggestive of COVID-19 were compared with individuals with negative SARS-CoV-2 polymerase chain reaction test results and an absence of clinical features suggestive of COVID-19. Main Outcomes and Measures: Inflammation of skeletal muscle tissue was assessed by quantification of immune cell infiltrates, expression of major histocompatibility complex (MHC) class I and class II antigens on the sarcolemma, and a blinded evaluation on a visual analog scale ranging from absence of pathology to the most pronounced pathology. Inflammation of cardiac muscles was assessed by quantification of immune cell infiltrates. Results: Forty-three patients with COVID-19 (median [interquartile range] age, 72 [16] years; 31 men [72%]) and 11 patients with diseases other than COVID-19 (median [interquartile range] age, 71 [5] years; 7 men [64%]) were included. Skeletal muscle samples from the patients who died with COVID-19 showed a higher overall pathology score (mean [SD], 3.4 [1.8] vs 1.5 [1.0]; 95% CI, 0-3; P < .001) and a higher inflammation score (mean [SD], 3.5 [2.1] vs 1.0 [0.6]; 95% CI, 0-4; P < .001). Relevant expression of MHC class I antigens on the sarcolemma was present in 23 of 42 specimens from patients with COVID-19 (55%) and upregulation of MHC class II antigens in 7 of 42 specimens from patients with COVID-19 (17%), but neither were found in any of the controls. Increased numbers of natural killer cells (median [interquartile range], 8 [8] vs 3 [4] cells per 10 high-power fields; 95% CI, 1-10 cells per 10 high-power fields; P < .001) were found. Skeletal muscles showed more inflammatory features than cardiac muscles, and inflammation was most pronounced in patients with COVID-19 with chronic courses. In some muscle specimens, SARS-CoV-2 RNA was detected by reverse transcription-polymerase chain reaction, but no evidence for a direct viral infection of myofibers was found by immunohistochemistry and electron microscopy. Conclusions and Relevance: In this case-control study of patients who had died with and without COVID-19, most individuals with severe COVID-19 showed signs of myositis ranging from mild to severe. Inflammation of skeletal muscles was associated with the duration of illness and was more pronounced than cardiac inflammation. Detection of viral load was low or negative in most skeletal and cardiac muscles and probably attributable to circulating viral RNA rather than genuine infection of myocytes. This suggests that SARS-CoV-2 may be associated with a postinfectious, immune-mediated myopathy.


Subject(s)
COVID-19/pathology , Muscle, Skeletal/pathology , Myocarditis/pathology , Myocardium/pathology , Myositis/pathology , Aged , Aged, 80 and over , Autopsy , CD8-Positive T-Lymphocytes/pathology , COVID-19/metabolism , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Case-Control Studies , Female , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Killer Cells, Natural/pathology , Leukocytes/pathology , Macrophages/pathology , Male , Middle Aged , Muscle, Skeletal/metabolism , Myocarditis/metabolism , Myocardium/metabolism , Myositis/metabolism , RNA, Viral/metabolism , SARS-CoV-2 , Sarcolemma/metabolism , Time Factors
5.
Int J Infect Dis ; 108: 274-281, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1253010

ABSTRACT

OBJECTIVES: Studies on coronavirus disease 2019 (COVID-19) usually focus on middle-aged and older adults. However, younger patients may present with severe COVID-19 with potentially fatal outcomes. For optimized, more specialized therapeutic regimens in this particular patient group, a better understanding of the underlying pathomechanisms is of utmost importance. METHODS: Our study investigated relevant, pre-existing medical conditions, clinical histories, and autopsy findings, together with SARS-CoV-2-RNA, determined by qPCR, and laboratory data in six COVID-19 decedents aged 50 years or younger, who were autopsied at the Charité University Hospital. RESULTS: From a total of 76 COVID-19 patients who underwent an autopsy at our institution, six (7.9%) were 50 years old or younger. Most of these younger COVID-19 decedents presented with pre-existing medical conditions prior to SARS-CoV-2 infection. These included overweight and obesity, arterial hypertension, asthma, and obstructive sleep apnea, as well as graft-versus-host disease following cancer and bone marrow transplantation. Furthermore, clinical histories and autopsy results revealed a disproportionally high prevalence of thromboembolism and ischemic organ damage in this patient cohort. Histopathology and laboratory results indicated coagulopathies, signs of immune dysregulation, and liver damage. CONCLUSIONS: In conclusion, pre-existing health conditions may increase the risk of severe and fatal COVID-19 in younger patients, who may be especially prone to developing thromboembolic complications, immune dysregulation, and liver damage.


Subject(s)
COVID-19 , Hypertension , Aged , Autopsy , Humans , Middle Aged , Overweight , SARS-CoV-2
6.
Sci Rep ; 11(1): 4263, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1091460

ABSTRACT

Infection by the new corona virus strain SARS-CoV-2 and its related syndrome COVID-19 has been associated with more than two million deaths worldwide. Patients of higher age and with preexisting chronic health conditions are at an increased risk of fatal disease outcome. However, detailed information on causes of death and the contribution of pre-existing health conditions to death yet is missing, which can be reliably established by autopsy only. We performed full body autopsies on 26 patients that had died after SARS-CoV-2 infection and COVID-19 at the Charité University Hospital Berlin, Germany, or at associated teaching hospitals. We systematically evaluated causes of death and pre-existing health conditions. Additionally, clinical records and death certificates were evaluated. We report findings on causes of death and comorbidities of 26 decedents that had clinically presented with severe COVID-19. We found that septic shock and multi organ failure was the most common immediate cause of death, often due to suppurative pulmonary infection. Respiratory failure due to diffuse alveolar damage presented as immediate cause of death in fewer cases. Several comorbidities, such as hypertension, ischemic heart disease, and obesity were present in the vast majority of patients. Our findings reveal that causes of death were directly related to COVID-19 in the majority of decedents, while they appear not to be an immediate result of preexisting health conditions and comorbidities. We therefore suggest that the majority of patients had died of COVID-19 with only contributory implications of preexisting health conditions to the mechanism of death.


Subject(s)
COVID-19/mortality , Cause of Death , Hospital Mortality , Adult , Aged , Aged, 80 and over , Autopsy , Berlin/epidemiology , COVID-19/complications , COVID-19/therapy , COVID-19/virology , Comorbidity , Female , Hospitals, Teaching/statistics & numerical data , Humans , Hypertension/epidemiology , Male , Middle Aged , Multiple Organ Failure/mortality , Multiple Organ Failure/virology , Myocardial Ischemia/epidemiology , Obesity/epidemiology , Prospective Studies , SARS-CoV-2/isolation & purification , Shock, Septic/mortality , Shock, Septic/virology
8.
Nat Neurosci ; 24(2): 168-175, 2021 02.
Article in English | MEDLINE | ID: covidwho-1060446

ABSTRACT

The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.


Subject(s)
Brain/virology , COVID-19/virology , Olfactory Mucosa/virology , SARS-CoV-2/pathogenicity , Central Nervous System , Humans , RNA, Viral/genetics , Smell/physiology , Virus Internalization
10.
Nat Neurosci ; 24(2): 168-175, 2021 02.
Article in English | MEDLINE | ID: covidwho-952133

ABSTRACT

The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.


Subject(s)
Brain/virology , COVID-19/virology , Olfactory Mucosa/virology , SARS-CoV-2/pathogenicity , Central Nervous System , Humans , RNA, Viral/genetics , Smell/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...