Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Eur J Med Res ; 26(1): 107, 2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1412355


BACKGROUND: COVID-19, the pandemic disease caused by infection with SARS-CoV-2, may take highly variable clinical courses, ranging from symptom-free and pauci-symptomatic to fatal disease. The goal of the current study was to assess the association of COVID-19 clinical courses controlled by patients' adaptive immune responses without progression to severe disease with patients' Human Leukocyte Antigen (HLA) genetics, AB0 blood group antigens, and the presence or absence of near-loss-of-function delta 32 deletion mutant of the C-C chemokine receptor type 5 (CCR5). PATIENT AND METHODS: An exploratory observational study including 157 adult COVID-19 convalescent patients was performed with a median follow-up of 250 days. The impact of different HLA genotypes, AB0 blood group antigens, and the CCR5 mutant CD195 were investigated for their role in the clinical course of COVID-19. In addition, this study addressed levels of severity and morbidity of COVID-19. The association of the immunogenetic background parameters were further related to patients' humoral antiviral immune response patterns by longitudinal observation. RESULTS: Univariate HLA analyses identified putatively protective HLA alleles (HLA class II DRB1*01:01 and HLA class I B*35:01, with a trend for DRB1*03:01). They were associated with reduced durations of disease instead decreased (rather than increased) total anti-S IgG levels. They had a higher virus neutralizing capacity compared to non-carriers. Conversely, analyses also identified HLA alleles (HLA class II DQB1*03:02 und HLA class I B*15:01) not associated with such benefit in the patient cohort of this study. Hierarchical testing by Cox regression analyses confirmed the significance of the protective effect of the HLA alleles identified (when assessed in composite) in terms of disease duration, whereas AB0 blood group antigen heterozygosity was found to be significantly associated with disease severity (rather than duration) in our cohort. A suggestive association of a heterozygous CCR5 delta 32 mutation status with prolonged disease duration was implied by univariate analyses but could not be confirmed by hierarchical multivariate testing. CONCLUSION: The current study shows that the presence of HLA class II DRB1*01:01 and HLA class I B*35:01 is of even stronger association with reduced disease duration in mild and moderate COVID-19 than age or any other potential risk factor assessed. Prospective studies in larger patient populations also including novel SARS-CoV-2 variants will be required to assess the impact of HLA genetics on the capacity of mounting protective vaccination responses in the future.

ABO Blood-Group System/genetics , COVID-19/etiology , HLA Antigens/genetics , Receptors, CCR5/genetics , Adult , Aged , COVID-19/epidemiology , COVID-19/genetics , Female , Genetic Predisposition to Disease , Genotype , HLA-DRB1 Chains/genetics , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin G/blood , Male , Middle Aged , Morbidity , Mutation , Severity of Illness Index
Eur J Med Res ; 26(1): 87, 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1344125


BACKGROUND: COVID-19 infection is a major threat to patients and health care providers around the world. One solution is the vaccination against SARS-CoV-2. METHODS: We performed a comprehensive query of the latest publications on the prevention of viral infections including the recent vaccination program and its side effects. RESULTS: The situation is evolving rapidly and there is no reasonable alternative to population-scale vaccination programs as currently enrolled. CONCLUSION: Therefore, regulatory authorities should consider supplementing their conventional mandate of post-approval pharmacovigilance, which is based on the collection, assessment, and regulatory response to emerging safety findings.

COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Informed Consent/standards , Pharmacovigilance , SARS-CoV-2/immunology , Vaccination/standards , COVID-19/immunology , COVID-19/virology , Disclosure , Humans
Eur J Clin Microbiol Infect Dis ; 40(5): 1063-1071, 2021 May.
Article in English | MEDLINE | ID: covidwho-1061091


Evaluation and power of seroprevalence studies depend on the performed serological assays. The aim of this study was to assess four commercial serological tests from EUROIMMUN, DiaSorin, Abbott, and Roche as well as an in-house immunofluorescence and neutralization test for their capability to identify SARS-CoV-2 seropositive individuals in a high-prevalence setting. Therefore, 42 social and working contacts of a German super-spreader were tested. Consistent with a high-prevalence setting, 26 of 42 were SARS-CoV-2 seropositive by neutralization test (NT), and immunofluorescence test (IFT) confirmed 23 of these 26 positive test results (NT 61.9% and IFT 54.8% seroprevalence). Four commercial assays detected anti-SARS-CoV-2 antibodies in 33.3-40.5% individuals. Besides an overall discrepancy between the NT and the commercial assays regarding their sensitivity, this study revealed that commercial SARS-CoV-2 spike-based assays are better to predict the neutralization titer than nucleoprotein-based assays are.

COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19 Serological Testing/standards , Contact Tracing , Female , Humans , Immunoassay , Male , Middle Aged , Neutralization Tests , Prevalence , SARS-CoV-2/immunology , Sensitivity and Specificity , Young Adult