Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Environ Res Public Health ; 17(15)2020 07 29.
Article in English | MEDLINE | ID: covidwho-693623

ABSTRACT

This study analyzed the morbidity and mortality rates of the coronavirus disease (COVID-19) pandemic in different prefectures of Japan. Under the constraint that daily maximum confirmed deaths and daily maximum cases should exceed 4 and 10, respectively, 14 prefectures were included, and cofactors affecting the morbidity and mortality rates were evaluated. In particular, the number of confirmed deaths was assessed, excluding cases of nosocomial infections and nursing home patients. The correlations between the morbidity and mortality rates and population density were statistically significant (p-value < 0.05). In addition, the percentage of elderly population was also found to be non-negligible. Among weather parameters, the maximum temperature and absolute humidity averaged over the duration were found to be in modest correlation with the morbidity and mortality rates. Lower morbidity and mortality rates were observed for higher temperature and absolute humidity. Multivariate linear regression considering these factors showed that the adjusted determination coefficient for the confirmed cases was 0.693 in terms of population density, elderly percentage, and maximum absolute humidity (p-value < 0.01). These findings could be useful for intervention planning during future pandemics, including a potential second COVID-19 outbreak.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Population Density , Weather , Aged , Coronavirus Infections/virology , Disease Outbreaks , Forecasting , Humans , Humidity , Japan/epidemiology , Morbidity , Pandemics , Pneumonia, Viral/virology , Temperature
2.
Int J Environ Res Public Health ; 17(15)2020 07 24.
Article in English | MEDLINE | ID: covidwho-671400

ABSTRACT

This study analyzed the spread and decay durations of the COVID-19 pandemic in different prefectures of Japan. During the pandemic, affordable healthcare was widely available in Japan and the medical system did not suffer a collapse, making accurate comparisons between prefectures possible. For the 16 prefectures included in this study that had daily maximum confirmed cases exceeding ten, the number of daily confirmed cases follow bell-shape or log-normal distribution in most prefectures. A good correlation was observed between the spread and decay durations. However, some exceptions were observed in areas where travelers returned from foreign countries, which were defined as the origins of infection clusters. Excluding these prefectures, the population density was shown to be a major factor, affecting the spread and decay patterns, with R2 = 0.39 (p < 0.05) and 0.42 (p < 0.05), respectively, approximately corresponding to social distancing. The maximum absolute humidity was found to affect the decay duration normalized by the population density (R2 > 0.36, p < 0.05). Our findings indicate that the estimated pandemic spread duration, based on the multivariate analysis of maximum absolute humidity, ambient temperature, and population density (adjusted R2 = 0.53, p-value < 0.05), could prove useful for intervention planning during potential future pandemics, including a second COVID-19 outbreak.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Humidity , Pneumonia, Viral/transmission , Population Density , Temperature , Coronavirus Infections/virology , Humans , Japan , Pandemics , Pneumonia, Viral/virology
3.
Brain Stimul ; 13(4): 1124-1149, 2020.
Article in English | MEDLINE | ID: covidwho-273738

ABSTRACT

BACKGROUND: The COVID-19 pandemic has broadly disrupted biomedical treatment and research including non-invasive brain stimulation (NIBS). Moreover, the rapid onset of societal disruption and evolving regulatory restrictions may not have allowed for systematic planning of how clinical and research work may continue throughout the pandemic or be restarted as restrictions are abated. The urgency to provide and develop NIBS as an intervention for diverse neurological and mental health indications, and as a catalyst of fundamental brain research, is not dampened by the parallel efforts to address the most life-threatening aspects of COVID-19; rather in many cases the need for NIBS is heightened including the potential to mitigate mental health consequences related to COVID-19. OBJECTIVE: To facilitate the re-establishment of access to NIBS clinical services and research operations during the current COVID-19 pandemic and possible future outbreaks, we develop and discuss a framework for balancing the importance of NIBS operations with safety considerations, while addressing the needs of all stakeholders. We focus on Transcranial Magnetic Stimulation (TMS) and low intensity transcranial Electrical Stimulation (tES) - including transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS). METHODS: The present consensus paper provides guidelines and good practices for managing and reopening NIBS clinics and laboratories through the immediate and ongoing stages of COVID-19. The document reflects the analysis of experts with domain-relevant expertise spanning NIBS technology, clinical services, and basic and clinical research - with an international perspective. We outline regulatory aspects, human resources, NIBS optimization, as well as accommodations for specific demographics. RESULTS: A model based on three phases (early COVID-19 impact, current practices, and future preparation) with an 11-step checklist (spanning removing or streamlining in-person protocols, incorporating telemedicine, and addressing COVID-19-associated adverse events) is proposed. Recommendations on implementing social distancing and sterilization of NIBS related equipment, specific considerations of COVID-19 positive populations including mental health comorbidities, as well as considerations regarding regulatory and human resource in the era of COVID-19 are outlined. We discuss COVID-19 considerations specifically for clinical (sub-)populations including pediatric, stroke, addiction, and the elderly. Numerous case-examples across the world are described. CONCLUSION: There is an evident, and in cases urgent, need to maintain NIBS operations through the COVID-19 pandemic, including anticipating future pandemic waves and addressing effects of COVID-19 on brain and mind. The proposed robust and structured strategy aims to address the current and anticipated future challenges while maintaining scientific rigor and managing risk.


Subject(s)
Biomedical Research/methods , Delivery of Health Care/methods , Nervous System Diseases/therapy , Telemedicine/methods , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Aged , Behavior, Addictive/therapy , Betacoronavirus , Brain/physiology , Child , Clinical Trials as Topic , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Practice Guidelines as Topic , Stroke/therapy , Substance-Related Disorders/therapy
SELECTION OF CITATIONS
SEARCH DETAIL